randomequalize in pytorch
来源:dev.to
2025-02-19 22:42:55
0浏览
收藏
最近发现不少小伙伴都对文章很感兴趣,所以今天继续给大家介绍文章相关的知识,本文《randomequalize in pytorch》主要内容涉及到等等知识点,希望能帮到你!当然如果阅读本文时存在不同想法,可以在评论中表达,但是请勿使用过激的措辞~
给我买咖啡☕
*备忘录:
- 我的帖子解释了牛津iiitpet()。
> randomequalize()可以用给定概率随机将图像的直方图均衡如下:
>*备忘录:
- 初始化的第一个参数是p(可选默认:0.5-type:int或float):
*备忘录:
- 是图像是否倒置的概率。 >
- 必须为0 < = x < = 1。
第一个参数是img(必需类型:pil图像或张量(int)):
*备忘录:
-
- 张量必须为2d或3d。
- 不使用img =。
-
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import RandomEqualize randomequalize = RandomEqualize() randomequalize = RandomEqualize(p=0.5) randomequalize # RandomEqualize(p=0.5) randomequalize.p # 0.5 origin_data = OxfordIIITPet( root="data", transform=None ) p0_data = OxfordIIITPet( root="data", transform=RandomEqualize(p=0) ) p05_data = OxfordIIITPet( root="data", transform=RandomEqualize(p=0.5) # transform=RandomEqualize() ) p1_data = OxfordIIITPet( root="data", transform=RandomEqualize(p=1) ) import matplotlib.pyplot as plt def show_images1(data, main_title=None): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images1(data=origin_data, main_title="origin_data") print() show_images1(data=p0_data, main_title="p0_data") show_images1(data=p0_data, main_title="p0_data") show_images1(data=p0_data, main_title="p0_data") print() show_images1(data=p05_data, main_title="p05_data") show_images1(data=p05_data, main_title="p05_data") show_images1(data=p05_data, main_title="p05_data") print() show_images1(data=p1_data, main_title="p1_data") show_images1(data=p1_data, main_title="p1_data") show_images1(data=p1_data, main_title="p1_data") # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(data, main_title=None, prob=0): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) re = RandomEqualize(p=prob) plt.imshow(X=re(im)) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images2(data=origin_data, main_title="origin_data") print() show_images2(data=origin_data, main_title="p0_data", prob=0) show_images2(data=origin_data, main_title="p0_data", prob=0) show_images2(data=origin_data, main_title="p0_data", prob=0) print() show_images2(data=origin_data, main_title="p05_data", prob=0.5) show_images2(data=origin_data, main_title="p05_data", prob=0.5) show_images2(data=origin_data, main_title="p05_data", prob=0.5) print() show_images2(data=origin_data, main_title="p1_data", prob=1) show_images2(data=origin_data, main_title="p1_data", prob=1) show_images2(data=origin_data, main_title="p1_data", prob=1)










今天关于《randomequalize in pytorch》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!
版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
智能算力规模增长超七成释放啥信号
- 上一篇
- 智能算力规模增长超七成释放啥信号
- 下一篇
- 宝塔PHP网站“文件未找到”错误如何解决?
查看更多
最新文章
-
- 文章 · python教程 | 2分钟前 |
- Python3argparse使用详解与实例
- 347浏览 收藏
-
- 文章 · python教程 | 19分钟前 | 错误处理 异常管理 上下文信息 Python自定义异常 继承Exception
- Python自定义异常类方法详解
- 275浏览 收藏
-
- 文章 · python教程 | 28分钟前 |
- Python操作Excel必备库openpyxl详解
- 130浏览 收藏
-
- 文章 · python教程 | 41分钟前 |
- 数据库模式驱动的SQL生成方法
- 224浏览 收藏
-
- 文章 · python教程 | 45分钟前 |
- OpenCV亮度调节技巧实战教程
- 409浏览 收藏
-
- 文章 · python教程 | 50分钟前 |
- isinstance与Protocol联合类型陷阱解析
- 402浏览 收藏
-
- 文章 · python教程 | 2小时前 | Python 警告处理 FutureWarning 未来版本 代码调整
- Python新版本警告解决方法大全
- 382浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- AWSLambdaPythonRedis缺失解决方法
- 201浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python抓取Yahoo财报数据方法
- 265浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python函数嵌套调用技巧与应用
- 106浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
查看更多
AI推荐
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3207次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3421次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3450次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4558次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3828次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

