当前位置:首页 > 文章列表 > 数据库 > MySQL > 统计学之讲讲切比雪夫定理

统计学之讲讲切比雪夫定理

来源:SegmentFault 2023-01-16 16:00:20 0浏览 收藏

数据库小白一枚,正在不断学习积累知识,现将学习到的知识记录一下,也是将我的所得分享给大家!而今天这篇文章《统计学之讲讲切比雪夫定理》带大家来了解一下统计学之讲讲切比雪夫定理,希望对大家的知识积累有所帮助,从而弥补自己的不足,助力实战开发!

前面讲了大数定理,讲了中心极限定理,有读者留言让讲讲切比雪夫定理,安排。这一篇就来讲讲切比雪夫定理。

在讲切比雪夫定理之前,我们先看下切比雪夫不等式:

image

其中P表示概率,X是随机变量,μ是期望,k是常数,σ是标准差,整个公式表示距离期望μ越远的值出现的概率是越小的。

再拿正态分布这张图来感受下,大部分值都是分布在均值附近的,离均值越远的值是越少的,对应出现的概率也就越低。

image

关于不等式的证明,我们就不证明了,有兴趣的同学可以去了解下,我们直接拿来用就好。

看完不了不等式,我们再来看定理,其实是一回事的,切比雪夫定理表示:

在任意一个数据集中,位于其均值±m个标准差范围内的数值比例至少为1-1/m2,其中m为大于1的任意正数。

对于m=2,m=3和m=5有如下结果:

所有数据中,至少有3/4(或75%)的数据位于均值±2个标准差范围内。
所有数据中,至少有8/9(或88.9%)的数据位于均值±3个标准差范围内。
所有数据中,至少有24/25(或96%)的数据位于均值±5个标准差范围内。

拿前面的正态分布为例,在均值±2个标准差范围内的数据约占到全部的95%。

我们来模拟生成两个不同分布(正态&非正态)的数据验证下:

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
#生成正态数据
norm_data = np.random.randn(1,990) 
#生成非正态数据
x = np.arange(0.01,1,0.001)
long_data = 1/x
data = pd.DataFrame({"norm_data":norm_data.reshape(990,),"long_data":long_data})
#绘制概率分布图
plt.figure(figsize = (8,8))
plt.subplot(221)
sns.distplot(data["norm_data"])
plt.subplot(222)
sns.distplot(data["long_data"])
#将正态&非正态数据按照标准差进行切分
norm_data_std_bin = [-np.inf
                     ,data["norm_data"].mean() - 3*data["norm_data"].std()
                     ,data["norm_data"].mean() - 2*data["norm_data"].std()
                     ,data["norm_data"].mean() - 1*data["norm_data"].std()
                     ,data["norm_data"].mean()
                     ,data["norm_data"].mean() + 1*data["norm_data"].std()
                     ,data["norm_data"].mean() + 2*data["norm_data"].std()
                     ,data["norm_data"].mean() + 3*data["norm_data"].std()
                     ,np.inf]
long_data_std_bin = [-np.inf
                     ,data["long_data"].mean() - 3*data["long_data"].std()
                     ,data["long_data"].mean() - 2*data["long_data"].std()
                     ,data["long_data"].mean() - 1*data["long_data"].std()
                     ,data["long_data"].mean()
                     ,data["long_data"].mean() + 1*data["long_data"].std()
                     ,data["long_data"].mean() + 2*data["long_data"].std()
                     ,data["long_data"].mean() + 3*data["long_data"].std()
                     ,np.inf]
data["norm_data_cut"] = pd.cut(data["norm_data"],bins = norm_data_std_bin)
data["long_data_cut"] = pd.cut(data["long_data"],bins = long_data_std_bin)
plt.subplot(223)
(data["norm_data_cut"].value_counts().sort_index()/data["norm_data_cut"].count()).plot(kind = "bar",rot = 30)
plt.xticks(np.arange(0,8),["[-inf,u-3σ]","[u-3σ,u-2σ]","[u-2σ,u-σ]","[u-σ,u]","[u,u+σ]","[u+σ,u+2σ]","[u+2σ,u+3σ]","[u+3σ,+inf]"])
plt.subplot(224)
(data["long_data_cut"].value_counts().sort_index()/data["long_data_cut"].count()).plot(kind = "bar",rot = 30)
plt.xticks(np.arange(0,8),["[-inf,u-3σ]","[u-3σ,u-2σ]","[u-2σ,u-σ]","[u-σ,u]","[u,u+σ]","[u+σ,u+2σ]","[u+2σ,u+3σ]","[u+3σ,+inf]"])

通过运行上面的代码可以得到如下四张图:

image

第一行是正态&非正态数据的概率分布,第一张是完美的正态分布,第二张是长尾分布。

第二行是正态&非正态数据中均值±m个标准差范围内的数据占比,可以看到第一张图中的数据占比与我们前面的正态分布示意图中是一致的,第二张图因为是长尾分布,所以大部分数据都集中在了均值均值±1个标准差范围内。

综上,不管是正态分布还是非正态分布,随机变量的分布情况都是满足切比雪夫定理的。这就像,有人说他月薪不超过100w一样。在大多数情况下都是正确的。

切比雪夫定理的一个应用场景就是用来对数据进行预估,比如你现在知道一个群体收入的均值和标准差,然后想要根据均值和标准差得出这个群体的整体收入情况,比如90%的人的收入是多少、80%的人的收入是多少?这个预估问题应该怎么算呢?

如果你已经确切的知道了这个群体的收入是符合正态分布的,那就简单了,我们知道正态分布中的数据是平均的分布在均值两侧的,90%的人会有45%的人小于均值,另外45%的人大于均值。

可现实情况中,并不是所有的数据都是符合正态分布的,也并不可以知道所有数据的真实分布情况,这个时候就可以用切比雪夫定理。要预估90%的人的收入问题,只需要让1-1/m2等于90%,即可求出m值,通过m值就可以知道90%的人的收入情况。

如果知道具体的分布,可以用具体的分布去进行估计,这样肯定更加准确,但是如果不知道具体分布的时候,可以用切比雪夫,虽然不是很精确,但是总比闭着眼睛猜要靠谱点。

本篇关于《统计学之讲讲切比雪夫定理》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于数据库的相关知识,请关注golang学习网公众号!

版本声明
本文转载于:SegmentFault 如有侵犯,请联系study_golang@163.com删除
统计科学之你到底偏哪边的?统计科学之你到底偏哪边的?
上一篇
统计科学之你到底偏哪边的?
统计科学之讲讲大数定理
下一篇
统计科学之讲讲大数定理
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 千音漫语:智能声音创作助手,AI配音、音视频翻译一站搞定!
    千音漫语
    千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
    91次使用
  • MiniWork:智能高效AI工具平台,一站式工作学习效率解决方案
    MiniWork
    MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
    85次使用
  • NoCode (nocode.cn):零代码构建应用、网站、管理系统,降低开发门槛
    NoCode
    NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
    99次使用
  • 达医智影:阿里巴巴达摩院医疗AI影像早筛平台,CT一扫多筛癌症急慢病
    达医智影
    达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
    93次使用
  • 智慧芽Eureka:更懂技术创新的AI Agent平台,助力研发效率飞跃
    智慧芽Eureka
    智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
    90次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码