当前位置:首页 > 文章列表 > 文章 > python教程 > 并发模式:主动对象

并发模式:主动对象

来源:dev.to 2025-01-13 20:33:48 0浏览 收藏

文章小白一枚,正在不断学习积累知识,现将学习到的知识记录一下,也是将我的所得分享给大家!而今天这篇文章《并发模式:主动对象》带大家来了解一下##content_title##,希望对大家的知识积累有所帮助,从而弥补自己的不足,助力实战开发!


介绍

主动对象模式是一种并发设计模式,它将方法执行方法调用解耦。此模式的主要目标是通过在单独的线程中执行操作来引入异步行为,同时向客户端提供同步接口。这是通过消息传递、请求队列和调度机制的组合来实现的。

关键部件

  1. proxy:代表客户端的公共接口。更简单地说,这就是客户端将要交互的内容。它将方法调用转换为对活动对象的请求。
  2. 调度器:管理请求队列并确定请求执行的顺序。
  3. servant:包含被调用方法的实际实现。这就是实际计算逻辑的所在。
  4. 激活队列:存储来自代理的请求,直到调度程序处理它们。
  5. future/callback:异步计算结果的占位符。

工作流程

  1. 客户端调用代理上的方法。
  2. 代理创建请求并将其放入激活队列中。
  3. 调度程序接收请求并将其转发给servant执行。
  4. 结果通过 future 对象返回给客户端。

使用案例

  • 需要可预测执行模式的实时系统。
  • gui 应用程序保持主线程响应。
  • 用于处理异步请求的分布式系统。

执行

假设我们需要进行计算,可能是 api 调用、数据库查询等。我不会实现任何异常处理,因为我太懒了。

def compute(x, y):
    time.sleep(2)  # some time taking task
    return x + y

没有活动对象模式

下面是我们如何在不使用主动对象模式的情况下处理并发请求的示例。

import threading
import time


def main():
    # start threads directly
    results = {}

    def worker(task_id, x, y):
        results[task_id] = compute(x, y)

    print("submitting tasks...")
    thread1 = threading.thread(target=worker, args=(1, 5, 10))
    thread2 = threading.thread(target=worker, args=(2, 15, 20))

    thread1.start()
    thread2.start()

    print("doing other work...")

    thread1.join()
    thread2.join()

    # retrieve results
    print("result 1:", results[1])
    print("result 2:", results[2])


if __name__ == "__main__":
    main()

上述方法的缺点

  • 线程管理:直接管理线程会增加复杂性,尤其是随着任务数量的增加。

  • 缺乏抽象:客户端负责管理线程的生命周期,将任务管理与业务逻辑耦合。

  • 可扩展性问题:如果没有适当的队列或调度机制,就无法控制任务执行顺序。

  • 响应能力有限:客户端必须等待线程加入才能访问结果。

使用主动对象模式实现

下面是主动对象模式的 python 实现,使用线程和队列来执行与上面相同的操作。我们将一一介绍每个部分:

methodrequest: 封装方法、参数和用于存储结果的 future。

class methodrequest:
    def __init__(self, method, args, kwargs, future):
        self.method = method
        self.args = args
        self.kwargs = kwargs
        self.future = future

    def execute(self):
        try:
            result = self.method(*self.args, **self.kwargs)
            self.future.set_result(result)
        except exception as e:
            self.future.set_exception(e)

调度程序:在单独的线程中持续处理来自activation_queue的请求。

import threading
import queue


class scheduler(threading.thread):
    def __init__(self):
        super().__init__()
        self.activation_queue = queue.queue()
        self._stop_event = threading.event()

    def enqueue(self, request):
        self.activation_queue.put(request)

    def run(self):
        while not self._stop_event.is_set():
            try:
                request = self.activation_queue.get(timeout=0.1)
                request.execute()
            except queue.empty:
                continue

    def stop(self):
        self._stop_event.set()
        self.join()

servant:实现实际逻辑(例如,计算方法)。

import time


class servant:
    def compute(self, x, y):
        time.sleep(2)
        return x + y

proxy:将方法调用转换为请求并返回结果的 future。

from concurrent.futures import future


class proxy:
    def __init__(self, servant, scheduler):
        self.servant = servant
        self.scheduler = scheduler

    def compute(self, x, y):
        future = future()
        request = methodrequest(self.servant.compute, (x, y), {}, future)
        self.scheduler.enqueue(request)
        return future

客户端:异步提交任务并在需要时检索结果。

def main():
    # Initialize components
    scheduler = Scheduler()
    scheduler.start()

    servant = Servant()
    proxy = Proxy(servant, scheduler)

    # Client makes an asynchronous call
    print("Submitting tasks...")
    future1 = proxy.compute(5, 10)
    future2 = proxy.compute(15, 20)

    # Perform other tasks while computation is ongoing
    print("Doing other work...")

    # Retrieve results
    print("Result 1:", future1.result())
    print("Result 2:", future2.result())

    # Shutdown scheduler
    scheduler.stop()

if __name__ == "__main__":
    main()

优点

  • 解耦接口:客户端可以调用方法而无需担心执行细节。
  • 响应性:异步执行确保客户端保持响应。
  • 可扩展性:支持多个并发请求。

缺点

  • 复杂性:增加架构复杂性。
  • 开销:需要额外的资源来管理线程和队列。
  • 延迟:异步处理可能会引入额外的延迟。

结论

主动对象模式是用于管理多线程环境中的异步操作的强大工具。通过将方法调用与执行分离,它可以确保更好的响应能力、可扩展性和更干净的代码库。虽然它具有一定的复杂性和潜在的性能开销,但它的好处使其成为需要高并发和可预测执行的场景的绝佳选择。然而,它的使用取决于当前的具体问题。与大多数模式和算法一样,不存在一刀切的解决方案。

参考

维基百科 - 活动对象

以上就是《并发模式:主动对象》的详细内容,更多关于的资料请关注golang学习网公众号!

版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
PC供应链去年11月底急单涌现 12月运营有望拉尾盘PC供应链去年11月底急单涌现 12月运营有望拉尾盘
上一篇
PC供应链去年11月底急单涌现 12月运营有望拉尾盘
解决问题的经验
下一篇
解决问题的经验
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    24次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    38次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    38次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    50次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    41次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码