当前位置:首页 > 文章列表 > 数据库 > Redis > Redis实现库存扣减的解决方案防止商品超卖

Redis实现库存扣减的解决方案防止商品超卖

来源:脚本之家 2022-12-29 19:02:22 0浏览 收藏

本篇文章主要是结合我之前面试的各种经历和实战开发中遇到的问题解决经验整理的,希望这篇《Redis实现库存扣减的解决方案防止商品超卖》对你有很大帮助!欢迎收藏,分享给更多的需要的朋友学习~

Redis 如何实现库存扣减操作?如何防止商品被超卖?

基于数据库单库存 基于数据库多库存 基于redis 基于redis实现扣减库存的具体实现 初始化库存回调函数(IStockCallback) 扣减库存服务(StockService)。

在这里插入图片描述

在日常开发中有很多地方都有类似扣减库存的操作,比如电商系统中的商品库存,抽奖系统中的奖品库存等。

解决方案

1. 使用mysql数据库

使用一个字段来存储库存,每次扣减库存去更新这个字段。

2. 还是使用数据库

但是将库存分层多份存到多条记录里面,扣减库存的时候路由一下,这样子增大了并发量,但是还是避免不了大量的去访问数据库来更新库存。

3. 将库存放到redis使用redis的incrby特性来扣减库存。

分析

在上面的第一种和第二种方式都是基于数据来扣减库存。

[基于数据库单库存]

第一种方式在所有请求都会在这里等待锁,获取锁有去扣减库存。在并发量不高的情况下可以使用,但是一旦并发量大了就会有大量请求阻塞在这里,导致请求超时,进而整个系统雪崩;而且会频繁的去访问数据库,大量占用数据库资源,所以在并发高的情况下这种方式不适用。

[基于数据库多库存]

第二种方式其实是第一种方式的优化版本,在一定程度上提高了并发量,但是在还是会大量的对数据库做更新操作大量占用数据库资源。

基于数据库来实现扣减库存还存在的一些问题:

用数据库扣减库存的方式,扣减库存的操作必须在一条语句中执行,不能先selec在update,这样在并发下会出现超扣的情况。如:

update number set x=x-1 where x > 0
  • MySQL自身对于高并发的处理性能就会出现问题,一般来说,MySQL的处理性能会随着并发thread上升而上升,但是到了一定的并发度之后会出现明显的拐点,之后一路下降,最终甚至会比单thread的性能还要差。
  • 当减库存和高并发碰到一起的时候,由于操作的库存数目在同一行,就会出现争抢InnoDB行锁的问题,导致出现互相等待甚至死锁,从而大大降低MySQL的处理性能,最终导致前端页面出现超时异常。

[基于redis]

针对上述问题的问题我们就有了第三种方案,将库存放到缓存,利用redis的incrby特性来扣减库存,解决了超扣和性能问题。但是一旦缓存丢失需要考虑恢复方案。比如抽奖系统扣奖品库存的时候,初始库存=总的库存数-已经发放的奖励数,但是如果是异步发奖,需要等到MQ消息消费完了才能重启redis初始化库存,否则也存在库存不一致的问题。

基于redis实现扣减库存的具体实现

  • 我们使用redis的lua脚本来实现扣减库存
  • 由于是分布式环境下所以还需要一个分布式锁来控制只能有一个服务去初始化库存
  • 需要提供一个回调函数,在初始化库存的时候去调用这个函数获取初始化库存

[初始化库存回调函数(IStockCallback )]

/**
 * 获取库存回调
 * @author yuhao.wang
 */
public interface IStockCallback {

 /**
  * 获取库存
  * @return
  */
 int getStock();
}

[扣减库存服务(StockService)]

/**
 * 扣库存
 *
 * @author yuhao.wang
 */
@Service
public class StockService {
    Logger logger = LoggerFactory.getLogger(StockService.class);

    /**
     * 不限库存
     */
    public static final long UNINITIALIZED_STOCK = -3L;

    /**
     * Redis 客户端
     */
    @Autowired
    private RedisTemplate redisTemplate;

    /**
     * 执行扣库存的脚本
     */
    public static final String STOCK_LUA;

    static {
        /**
         *
         * @desc 扣减库存Lua脚本
         * 库存(stock)-1:表示不限库存
         * 库存(stock)0:表示没有库存
         * 库存(stock)大于0:表示剩余库存
         *
         * @params 库存key
         * @return
         *   -3:库存未初始化
         *   -2:库存不足
         *   -1:不限库存
         *   大于等于0:剩余库存(扣减之后剩余的库存)
         *      redis缓存的库存(value)是-1表示不限库存,直接返回1
         */
        StringBuilder sb = new StringBuilder();
        sb.append("if (redis.call('exists', KEYS[1]) == 1) then");
        sb.append("    local stock = tonumber(redis.call('get', KEYS[1]));");
        sb.append("    local num = tonumber(ARGV[1]);");
        sb.append("    if (stock == -1) then");
        sb.append("        return -1;");
        sb.append("    end;");
        sb.append("    if (stock >= num) then");
        sb.append("        return redis.call('incrby', KEYS[1], 0 - num);");
        sb.append("    end;");
        sb.append("    return -2;");
        sb.append("end;");
        sb.append("return -3;");
        STOCK_LUA = sb.toString();
    }

    /**
     * @param key           库存key
     * @param expire        库存有效时间,单位秒
     * @param num           扣减数量
     * @param stockCallback 初始化库存回调函数
     * @return -2:库存不足; -1:不限库存; 大于等于0:扣减库存之后的剩余库存
     */
    public long stock(String key, long expire, int num, IStockCallback stockCallback) {
        long stock = stock(key, num);
        // 初始化库存
        if (stock == UNINITIALIZED_STOCK) {
            RedisLock redisLock = new RedisLock(redisTemplate, key);
            try {
                // 获取锁
                if (redisLock.tryLock()) {
                    // 双重验证,避免并发时重复回源到数据库
                    stock = stock(key, num);
                    if (stock == UNINITIALIZED_STOCK) {
                        // 获取初始化库存
                        final int initStock = stockCallback.getStock();
                        // 将库存设置到redis
                        redisTemplate.opsForValue().set(key, initStock, expire, TimeUnit.SECONDS);
                        // 调一次扣库存的操作
                        stock = stock(key, num);
                    }
                }
            } catch (Exception e) {
                logger.error(e.getMessage(), e);
            } finally {
                redisLock.unlock();
            }

        }
        return stock;
    }

    /**
     * 加库存(还原库存)
     *
     * @param key    库存key
     * @param num    库存数量
     * @return
     */
    public long addStock(String key, int num) {

        return addStock(key, null, num);
    }

    /**
     * 加库存
     *
     * @param key    库存key
     * @param expire 过期时间(秒)
     * @param num    库存数量
     * @return
     */
    public long addStock(String key, Long expire, int num) {
        boolean hasKey = redisTemplate.hasKey(key);
        // 判断key是否存在,存在就直接更新
        if (hasKey) {
            return redisTemplate.opsForValue().increment(key, num);
        }

        Assert.notNull(expire,"初始化库存失败,库存过期时间不能为null");
        RedisLock redisLock = new RedisLock(redisTemplate, key);
        try {
            if (redisLock.tryLock()) {
                // 获取到锁后再次判断一下是否有key
                hasKey = redisTemplate.hasKey(key);
                if (!hasKey) {
                    // 初始化库存
                    redisTemplate.opsForValue().set(key, num, expire, TimeUnit.SECONDS);
                }
            }
        } catch (Exception e) {
            logger.error(e.getMessage(), e);
        } finally {
            redisLock.unlock();
        }

        return num;
    }

    /**
     * 获取库存
     *
     * @param key 库存key
     * @return -1:不限库存; 大于等于0:剩余库存
     */
    public int getStock(String key) {
        Integer stock = (Integer) redisTemplate.opsForValue().get(key);
        return stock == null ? -1 : stock;
    }

    /**
     * 扣库存
     *
     * @param key 库存key
     * @param num 扣减库存数量
     * @return 扣减之后剩余的库存【-3:库存未初始化; -2:库存不足; -1:不限库存; 大于等于0:扣减库存之后的剩余库存】
     */
    private Long stock(String key, int num) {
        // 脚本里的KEYS参数
        List keys = new ArrayList();
        keys.add(key);
        // 脚本里的ARGV参数
        List args = new ArrayList();
        args.add(Integer.toString(num));

        long result = redisTemplate.execute(new RedisCallback() {
            @Override
            public Long doInRedis(RedisConnection connection) throws DataAccessException {
                Object nativeConnection = connection.getNativeConnection();
                // 集群模式和单机模式虽然执行脚本的方法一样,但是没有共同的接口,所以只能分开执行
                // 集群模式
                if (nativeConnection instanceof JedisCluster) {
                    return (Long) ((JedisCluster) nativeConnection).eval(STOCK_LUA, keys, args);
                }

                // 单机模式
                else if (nativeConnection instanceof Jedis) {
                    return (Long) ((Jedis) nativeConnection).eval(STOCK_LUA, keys, args);
                }
                return UNINITIALIZED_STOCK;
            }
        });
        return result;
    }
}

[调用]

/**
 * @author yuhao.wang
 */
@RestController
public class StockController {

    @Autowired
    private StockService stockService;

    @RequestMapping(value = "stock", produces = MediaType.APPLICATION_JSON_UTF8_VALUE)
    public Object stock() {
        // 商品ID
        long commodityId = 1;
        // 库存ID
        String redisKey = "redis_key:stock:" + commodityId;
        long stock = stockService.stock(redisKey, 60 * 60, 2, () -> initStock(commodityId));
        return stock >= 0;
    }

    /**
     * 获取初始的库存
     *
     * @return
     */
    private int initStock(long commodityId) {
        // TODO 这里做一些初始化库存的操作
        return 1000;
    }

    @RequestMapping(value = "getStock", produces = MediaType.APPLICATION_JSON_UTF8_VALUE)
    public Object getStock() {
        // 商品ID
        long commodityId = 1;
        // 库存ID
        String redisKey = "redis_key:stock:" + commodityId;

        return stockService.getStock(redisKey);
    }

    @RequestMapping(value = "addStock", produces = MediaType.APPLICATION_JSON_UTF8_VALUE)
    public Object addStock() {
        // 商品ID
        long commodityId = 2;
        // 库存ID
        String redisKey = "redis_key:stock:" + commodityId;

        return stockService.addStock(redisKey, 2);
    }
}

结语

到这里,我们也就讲完了《Redis实现库存扣减的解决方案防止商品超卖》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于redis的知识点!

版本声明
本文转载于:脚本之家 如有侵犯,请联系study_golang@163.com删除
利用Redis实现点赞功能的示例代码利用Redis实现点赞功能的示例代码
上一篇
利用Redis实现点赞功能的示例代码
利用Redis实现订单30分钟自动取消
下一篇
利用Redis实现订单30分钟自动取消
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    20次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    18次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    32次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    33次使用
  • 可图AI图片生成:快手可灵AI2.0引领图像创作新时代
    可图AI图片生成
    探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
    56次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码