利用Redis实现点赞功能的示例代码
本篇文章向大家介绍《利用Redis实现点赞功能的示例代码》,主要包括Redis点赞,具有一定的参考价值,需要的朋友可以参考一下。
提到点赞,大家一想到的是不是就是朋友圈的点赞呀?其实点赞对我们来说并不陌生,我们经常会在手机软件或者网页中看到它,今天就让我们来了解一下它的实现吧。我们常见的设计思路大概分为两种:一种自然是用 MySQL 等数据库直接落地存储, 另外一种就是将点赞的数据保存到 Redis 等缓存里,在一定时间后刷回 MySQL 等数据库。
MySQL 和 Redis优缺点
首先我们来说一下两种方法各自的优缺点:我们以 MySQL 和 Redis 为例。
1、直接写入数据库:
优点:这种方法实现简单,只需完成数据库的增删改查就行;
缺点:数据库读写压力大,如果遇到热门文章在短时间内被大量点赞的情况,直接操作数据库会给数据库带来巨大压力,影响效率。
2、使用 Redis 缓存:
优点:性能高,读写速度快,缓解数据库读写的压力;
缺点:开发复杂,不能保证数据安全性即 redis 挂掉的时候会丢失数据, 同时不及时同步 redis 中的数据, 可能会在 redis 内存置换的时候被淘汰掉。不过对于点赞数据我们不需要那么精确,丢失一点数据问题不大。
接下来就从以下三个方面对点赞功能做详细的介绍
•Redis 缓存设计
•数据库设计
•开启定时任务持久化存储到数据库
1、Redis 缓存设计及实现
Redis 的整合我们在上一篇文章中已经介绍过了,此处就不再赘述了。我们了解到,我们在做点赞的时候需要记录以下几类数据:一类是某用户被其他用户点赞的详细记录,一类是。考虑到查询与存取方便快捷,我这边采用 Hash 结构进行存储,存储结构如下:
(1)某用户被其他用户点赞的详细记录: MAP_USER_LIKED 为键值, 被点赞用户id::点赞用户id 为 filed, 1或者0 为 value
(2)某用户被点赞的数量统计: MAP_USER_LIKED_COUNT 为键值, 被点赞用户id 为 filed, count 为 value
部分代码如下
/**
* 将用户被其他用户点赞的数据存到redis
*/
@Override
public void saveLiked2Redis(String likedUserId, String likedPostId) {
String key = RedisKeyUtils.getLikedKey(likedUserId, likedPostId);
redisTemplate.opsForHash().put(RedisKeyUtils.MAP_KEY_USER_LIKED,key, LikedStatusEnum.LIKE.getCode());
}
//取消点赞
@Override
public void unlikeFromRedis(String likedUserId, String likedPostId) {
String key = RedisKeyUtils.getLikedKey(likedUserId, likedPostId);
redisTemplate.opsForHash().put(RedisKeyUtils.MAP_KEY_USER_LIKED,key,LikedStatusEnum.UNLIKE.getCode());
}
/**
* 将被点赞用户的数量+1
*/
@Override
public void incrementLikedCount(String likedUserId) {
redisTemplate.opsForHash().increment(RedisKeyUtils.MAP_KEY_USER_LIKED_COUNT,likedUserId,1);
}
//-1
@Override
public void decrementLikedCount(String likedUserId) {
redisTemplate.opsForHash().increment(RedisKeyUtils.MAP_KEY_USER_LIKED_COUNT, likedUserId, -1);
}
/**
* 获取Redis中的用户点赞详情记录
*/
@Override
public List<userlikedetail> getLikedDataFromRedis() {
Cursor<map.entry>> scan = redisTemplate.opsForHash().scan(RedisKeyUtils.MAP_KEY_USER_LIKED, ScanOptions.NONE);
List<userlikedetail> list = new ArrayList();
while (scan.hasNext()){
Map.Entry<object object> entry = scan.next();
String key = (String) entry.getKey();
String[] split = key.split("::");
String likedUserId = split[0];
String likedPostId = split[1];
Integer value = (Integer) entry.getValue();
//组装成 UserLike 对象
UserLikeDetail userLikeDetail = new UserLikeDetail(likedUserId, likedPostId, value);
list.add(userLikeDetail);
//存到 list 后从 Redis 中删除
redisTemplate.opsForHash().delete(RedisKeyUtils.MAP_KEY_USER_LIKED, key);
}
return list;
}
/**
* 获取Redis中的用户被点赞数量
*/
@Override
public List<userlikcountdto> getLikedCountFromRedis() {
Cursor<map.entry>> cursor = redisTemplate.opsForHash().scan(RedisKeyUtils.MAP_KEY_USER_LIKED_COUNT, ScanOptions.NONE);
List<userlikcountdto> list = new ArrayList();
while(cursor.hasNext()){
Map.Entry<object object> map = cursor.next();
String key = (String) map.getKey();
Integer value = (Integer) map.getValue();
UserLikCountDTO userLikCountDTO = new UserLikCountDTO(key,value);
list.add(userLikCountDTO);
//存到 list 后从 Redis 中删除
redisTemplate.opsForHash().delete(RedisKeyUtils.MAP_KEY_USER_LIKED_COUNT,key);
}
return list;
}</object></userlikcountdto></map.entry></userlikcountdto></object></userlikedetail></map.entry></userlikedetail>
Redis 存储结构如图


2、数据库设计
这里我们可以和直接将点赞数据存到数据库一样,设计两张表:
(1)用户被其他用户点赞的详细记录:user_like_detail
DROP TABLE IF EXISTS `user_like_detail`; CREATE TABLE `user_like_detail` ( `id` int(11) NOT NULL AUTO_INCREMENT, `liked_user_id` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '被点赞的用户id', `liked_post_id` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '点赞的用户id', `status` tinyint(1) NULL DEFAULT 1 COMMENT '点赞状态,0取消,1点赞', `create_time` timestamp(0) NOT NULL DEFAULT CURRENT_TIMESTAMP(0) COMMENT '创建时间', `update_time` timestamp(0) NOT NULL DEFAULT CURRENT_TIMESTAMP(0) ON UPDATE CURRENT_TIMESTAMP(0) COMMENT '修改时间', PRIMARY KEY (`id`) USING BTREE, INDEX `liked_user_id`(`liked_user_id`) USING BTREE, INDEX `liked_post_id`(`liked_post_id`) USING BTREE ) ENGINE = InnoDB AUTO_INCREMENT = 7 CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = '用户点赞表' ROW_FORMAT = Dynamic; SET FOREIGN_KEY_CHECKS = 1;
(2)用户被点赞的数量统计:user_like_count
DROP TABLE IF EXISTS `user_like_count`; CREATE TABLE `user_like_count` ( `id` int(11) NOT NULL AUTO_INCREMENT, `like_num` int(11) NULL DEFAULT 0, PRIMARY KEY (`id`) USING BTREE ) ENGINE = InnoDB AUTO_INCREMENT = 7 CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic; SET FOREIGN_KEY_CHECKS = 1;
3、开启定时任务持久化存储到数据库
我们使用 Quartz 来实现定时任务,将 Redis 中的数据存储到数据库中,为了演示效果,我们可以设置一分钟或者两分钟存储一遍数据,这个视具体业务而定。在同步数据的过程中,我们首先要将 Redis 中的数据在数据库中进行查重,舍弃重复数据,这样我们的数据才会更加准确。
部分代码如下
//同步redis的用户点赞数据到数据库
@Override
@Transactional
public void transLikedFromRedis2DB() {
List<userlikedetail> list = redisService.getLikedDataFromRedis();
list.stream().forEach(item->{
//查重
UserLikeDetail userLikeDetail = userLikeDetailMapper.selectOne(new LambdaQueryWrapper<userlikedetail>()
.eq(UserLikeDetail::getLikedUserId, item.getLikedUserId())
.eq(UserLikeDetail::getLikedPostId, item.getLikedPostId()));
if (userLikeDetail == null){
userLikeDetail = new UserLikeDetail();
BeanUtils.copyProperties(item, userLikeDetail);
//没有记录,直接存入
userLikeDetail.setCreateTime(LocalDateTime.now());
userLikeDetailMapper.insert(userLikeDetail);
}else{
//有记录,需要更新
userLikeDetail.setStatus(item.getStatus());
userLikeDetail.setUpdateTime(LocalDateTime.now());
userLikeDetailMapper.updateById(item);
}
});
}
@Override
@Transactional
public void transLikedCountFromRedis2DB() {
List<userlikcountdto> list = redisService.getLikedCountFromRedis();
list.stream().forEach(item->{
UserLikeCount user = userLikeCountMapper.selectById(item.getKey());
//点赞数量属于无关紧要的操作,出错无需抛异常
if (user != null){
Integer likeNum = user.getLikeNum() + item.getValue();
user.setLikeNum(likeNum);
//更新点赞数量
userLikeCountMapper.updateById(user);
}
});
}
</userlikcountdto></userlikedetail></userlikedetail>
至此我们就实现了基于 Redis 的点赞功能,我们还需要注意一点:查询用户点赞情况时,需要同时查询数据库+缓存中的数据。
以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于数据库的相关知识,也可关注golang学习网公众号。
Redis哨兵模式实现一主二从三哨兵
- 上一篇
- Redis哨兵模式实现一主二从三哨兵
- 下一篇
- Redis实现库存扣减的解决方案防止商品超卖
-
- 数据库 · Redis | 11小时前 |
- 监控Redis集群健康状态的工具与指标
- 112浏览 收藏
-
- 数据库 · Redis | 1星期前 |
- Redis数据安全防护全攻略
- 252浏览 收藏
-
- 数据库 · Redis | 2星期前 |
- Redis主从复制故障排查与修复技巧
- 302浏览 收藏
-
- 数据库 · Redis | 2星期前 |
- Redis与HBase存储方案详解
- 325浏览 收藏
-
- 数据库 · Redis | 2星期前 |
- Redis数据安全防护全攻略
- 157浏览 收藏
-
- 数据库 · Redis | 2星期前 |
- 高并发Redis优化技巧分享
- 257浏览 收藏
-
- 数据库 · Redis | 2星期前 |
- Redis数据安全防护全攻略
- 398浏览 收藏
-
- 数据库 · Redis | 3星期前 |
- Redis配置加密方法与安全设置
- 232浏览 收藏
-
- 数据库 · Redis | 3星期前 |
- RedisHyperLogLog高效统计技巧
- 283浏览 收藏
-
- 数据库 · Redis | 3星期前 |
- Redis与MySQL缓存同步方法详解
- 141浏览 收藏
-
- 数据库 · Redis | 3星期前 |
- Redis布隆过滤器防穿透原理解析
- 312浏览 收藏
-
- 数据库 · Redis | 1个月前 |
- Redis容器化部署实战技巧分享
- 195浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3164次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3376次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3405次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4509次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3785次使用
-
- 使用Redis实现点赞取消点赞的详细代码
- 2023-01-07 322浏览

