当前位置:首页 > 文章列表 > Golang > Go教程 > 使用 Amazon Titan Text Premier 模型在 Go 中构建生成式 AI 应用程序

使用 Amazon Titan Text Premier 模型在 Go 中构建生成式 AI 应用程序

来源:dev.to 2024-09-04 10:22:10 0浏览 收藏

Golang小白一枚,正在不断学习积累知识,现将学习到的知识记录一下,也是将我的所得分享给大家!而今天这篇文章《使用 Amazon Titan Text Premier 模型在 Go 中构建生成式 AI 应用程序》带大家来了解一下##content_title##,希望对大家的知识积累有所帮助,从而弥补自己的不足,助力实战开发!


将 amazon titan text premier 模型与 langchaingo 包结合使用

在本博客中,我将引导您了解如何通过 langchaingo 在 go 应用程序中使用 amazon titan text premier 模型,langchaingo 是 langchain 的 go 端口(最初是为 python 和 js/ts 编写的)。

amazon titan text premier 是 amazon titan text 系列中的高级法学硕士。它适用于各种任务,包括 rag、代理、聊天、思想链、开放式文本生成、头脑风暴、总结、代码生成、表格创建、数据格式化、释义、重写、提取和问答。 titan text premier 还针对与 amazon bedrock 的代理和知识库集成进行了优化。

将 titan text premier 与 langchaingo 结合使用

让我们从一个例子开始。

请参阅本博文中的**开始之前*部分,以完成运行示例的先决条件。这包括安装 go、配置 amazon bedrock 访问以及提供必要的 iam 权限。*

完整代码可以参考这里。运行示例:

git clone https://github.com/abhirockzz/titan-premier-bedrock-go
cd titan-premier-bedrock-go

go run basic/main.go

针对“用 100 个单词或更少的内容解释 ai”提示,我得到了以下回复,但您的情况可能有所不同:

artificial intelligence (ai) is a branch of computer science that focuses on creating intelligent machines that can think, learn, and act like humans. it uses advanced algorithms and machine learning techniques to enable computers to recognize patterns, make decisions, and solve problems. ai has the potential to revolutionize various industries, including healthcare, finance, transportation, and entertainment, by automating tasks, improving efficiency, and providing personalized experiences. however, there are also concerns about the ethical implications and potential risks associated with ai, such as job displacement, privacy, and bias.

以下是代码的快速浏览:

我们首先实例化 bedrockruntime.client:

cfg, err := config.loaddefaultconfig(context.background(), config.withregion(region))
client = bedrockruntime.newfromconfig(cfg)

我们使用它来创建 langchaingo llm.model 实例 - 请注意,我们指定的 modelid 是 titan text premier 的 modelid,即 amazon.titan-text-premier-v1:0。

llm, err := bedrock.new(bedrock.withclient(client), bedrock.withmodel(modelid))

我们创建一个 llms.messagecontent,llm 调用由 llm.generatecontent 完成。请注意,您不必考虑 titan text premier 特定请求/响应有效负载 - 这是由 langchaingo 抽象的:

    msg := []llms.messagecontent{
        {
            role: llms.chatmessagetypehuman,
            parts: []llms.contentpart{
                llms.textpart("explain ai in 100 words or less."),
            },
        },
    }

    resp, err := llm.generatecontent(context.background(), msg, llms.withmaxtokens(maxtokencountlimitfortitantextpremier))

与您的文档聊天

这也是一个很常见的场景。 langchaingo 支持多种类型,包括文本、pdf、html(甚至 notion!)。

完整代码可以参考这里。要运行此示例:

go run doc-chat/main.go

该示例使用 amazon bedrock 用户指南中的此页面作为源文档 (html),但您可以随意使用任何其他来源:

export source_url=<enter url>
go run doc-chat/main.go

系统应该提示您输入问题:

loaded content from https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids.html

enter your message: 

我尝试了这些问题并得到了相当准确的答案:

1. tell me the names of the supported providers
2. tell me the model id for titan text premier
3. give me the list of amazon titan family of models
4. what is the titan text premier model id for a provisioned throughput customer?

使用 Amazon Titan Text Premier 模型在 Go 中构建生成式 AI 应用程序

顺便说一下,amazon bedrock 本身也提供了“与文档聊天”功能。

让我们快速浏览一下代码。我们首先从源 url 加载内容:

func getdocs(link string) []schema.document {
    //...
    resp, err := http.get(link)
    docs, err := documentloaders.newhtml(resp.body).load(context.background())
    return docs
}

然后,我们使用简单的 for 循环开始对话:

    //...
    for {
        fmt.print("\nenter your message: ")
        input, _ := reader.readstring('\n')
        input = strings.trimspace(input)

        answer, err := chains.call(
            context.background(),
            docchainwithcustomprompt(llm),
            map[string]any{
                "input_documents": docs,
                "question":        input,
            },
            chains.withmaxtokens(maxtokencountlimitfortitantextpremier))
        //...
    }

我们使用的链是使用自定义提示创建的(基于此指南) - 我们覆盖 langchaingo 中的默认行为:

func docchainwithcustomprompt(llm *bedrock_llm.llm) chains.chain {

    ragprompttemplate := prompts.newprompttemplate(
        prompttemplatestring,
        []string{"context", "question"},
    )

    qapromptselector := chains.conditionalpromptselector{
        defaultprompt: ragprompttemplate,
    }

    prompt := qapromptselector.getprompt(llm)

    llmchain := chains.newllmchain(llm, prompt)
    return chains.newstuffdocuments(llmchain)
}

现在来看最后一个例子 - 另一个流行的用例。

rag - 检索增强生成

我之前介绍过如何在 go 应用程序中使用 rag。这次我们将使用:

  • titan text premier 作为法学硕士,
  • titan embeddings g1 作为嵌入模型,
  • 使用 pgvector 扩展将 postgresql 作为向量存储(使用 docker 在本地运行)。

启动 docker 容器:

docker run --name pgvector --rm -it -p 5432:5432 -e postgres_user=postgres -e postgres_password=postgres ankane/pgvector

通过从不同的终端登录 postgresql(使用 psql)来激活 pgvector 扩展:

# enter postgres when prompted for password
psql -h localhost -u postgres -w

create extension if not exists vector;

完整代码可以参考这里。要运行此示例:

go run rag/main.go

该示例使用 amazon bedrock studio 页面作为源文档 (html),但您可以随意使用任何其他源:

export source_url=<enter url>
go run rag/main.go

您应该看到输出,并提示输入您的问题。我尝试过这些:

what is bedrock studio?
how do i enable bedrock studio?

使用 Amazon Titan Text Premier 模型在 Go 中构建生成式 AI 应用程序

像往常一样,让我们​​看看发生了什么。数据加载的方式与以前类似,对话也同样如此(for 循环):

    for {
        fmt.print("\nenter your message: ")
        question, _ := reader.readstring('\n')
        question = strings.trimspace(question)

        result, err := chains.run(
            context.background(),
            retrievalqachainwithcustomprompt(llm, vectorstores.toretriever(store, numofresults)),
            question,
            chains.withmaxtokens(maxtokencountlimitfortitantextpremier),
        )
    //....
    }

rag 部分略有不同。我们使用带有自定义提示的 retrievelqa 链(类似于 amazon bedrock 知识库使用的提示):

func retrievalQAChainWithCustomPrompt(llm *bedrock_llm.LLM, retriever vectorstores.Retriever) chains.Chain {

    ragPromptTemplate := prompts.NewPromptTemplate(
        ragPromptTemplateString,
        []string{"context", "question"},
    )

    qaPromptSelector := chains.ConditionalPromptSelector{
        DefaultPrompt: ragPromptTemplate,
    }

    prompt := qaPromptSelector.GetPrompt(llm)

    llmChain := chains.NewLLMChain(llm, prompt)
    stuffDocsChain := chains.NewStuffDocuments(llmChain)

    return chains.NewRetrievalQA(
        stuffDocsChain,
        retriever,
    )
}

结论

我介绍了 amazon titan text premier,它是 titan 系列中的多种文本生成模型之一。除了文本生成之外,amazon titan 还具有嵌入模型(文本和多模式)和图像生成。您可以通过探索 amazon bedrock 文档中的所有内容来了解​​更多信息。快乐建造!

终于介绍完啦!小伙伴们,这篇关于《使用 Amazon Titan Text Premier 模型在 Go 中构建生成式 AI 应用程序》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布Golang相关知识,快来关注吧!

版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
Day 组件和 Props - ReactJSDay 组件和 Props - ReactJS
上一篇
Day 组件和 Props - ReactJS
中国科学院大连化物所等开发出用于电池寿命预测的深度学习模型
下一篇
中国科学院大连化物所等开发出用于电池寿命预测的深度学习模型
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 茅茅虫AIGC检测:精准识别AI生成内容,保障学术诚信
    茅茅虫AIGC检测
    茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
    96次使用
  • 赛林匹克平台:科技赛事聚合,赋能AI、算力、量子计算创新
    赛林匹克平台(Challympics)
    探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
    101次使用
  • SEO  笔格AIPPT:AI智能PPT制作,免费生成,高效演示
    笔格AIPPT
    SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
    108次使用
  • 稿定PPT:在线AI演示设计,高效PPT制作工具
    稿定PPT
    告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
    102次使用
  • Suno苏诺中文版:AI音乐创作平台,人人都是音乐家
    Suno苏诺中文版
    探索Suno苏诺中文版,一款颠覆传统音乐创作的AI平台。无需专业技能,轻松创作个性化音乐。智能词曲生成、风格迁移、海量音效,释放您的音乐灵感!
    102次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码