“警惕时间复杂度陷阱”
大家好,我们又见面了啊~本文《“警惕时间复杂度陷阱”》的内容中将会涉及到等等。如果你正在学习文章相关知识,欢迎关注我,以后会给大家带来更多文章相关文章,希望我们能一起进步!下面就开始本文的正式内容~
警惕时间复杂度陷阱
写在这里
一个bilibili视频也展示了这个:[bilibili视频][https://www.bilibili.com/video/bv16u4m1c7cu/?spm_id_from=333.999.0.0] 我觉得这是一个很好的视频,但它的语言是中文。
时间复杂度
- 时间复杂度是什么意思?
时间复杂度是算法运行所需时间的度量,作为其输入大小的函数。它是描述算法效率的一种方式,用于比较不同的算法并确定哪种算法最有效。
如何计算时间复杂度?
为了计算时间复杂度,我们需要将算法执行的操作数视为输入大小的函数。测量操作次数的最常见方法是计算特定操作执行的次数。
计算时间复杂度时有哪些常见陷阱?
- 不考虑输入大小:如果我们只考虑算法执行的操作数量,我们可能会低估时间复杂度。例如,如果我们计算循环运行的次数,但不考虑输入的大小,那么时间复杂度可能会太高。
- 不考虑算法的效率:有些算法即使输入量很小也可能会执行很多操作,这会导致时间复杂度很高。例如,冒泡排序和选择排序等排序算法具有二次时间复杂度,即使它们可能只需要交换小数组中的两个元素。
- 不考虑算法的最坏情况:某些算法具有最好情况,其中执行的操作比最坏情况要少。例如,像二分搜索这样的搜索算法有一个最好的情况,即它们在对数时间内找到目标元素,但它们有一个最坏的情况,即它们需要检查数组中的所有元素。
让我们看一些时间复杂度的例子
这里有一个问题:
找出列表中最多 10 个整数。
import random ls = [random.randint(1, 100) for _ in range(n)]
这是测试功能:
import time def benchmark(func, *args) -> float: start = time.perf_counter() func(*args) end = time.perf_counter() return end - start
解决方案1:使用堆
这是使用 heapq 模块的解决方案:
def find_max_n(ls, n): import heapq return heapq.nlargest(n, ls)
或者我们用python的方式来写:
def find_largest_n(nums, n): if n <= 0: return [] max_heap = [] for num in nums: if len(max_heap) < n: max_heap.append(num) # call sift_down for i in range((len(max_heap) - 2) // 2, -1, -1): _sift_down(max_heap, i) elif num > max_heap[0]: max_heap[0] = num _sift_down(max_heap, 0) return max_heap def _sift_down(heap, index): left = 2 * index + 1 right = 2 * index + 2 largest = index if left < len(heap) and heap[left] > heap[largest]: largest = left if right < len(heap) and heap[right] > heap[largest]: largest = right if largest != index: heap[index], heap[largest] = heap[largest], heap[index] _sift_down(heap, largest)
解决方案2:使用排序
这是使用排序功能的解决方案:
def find_max_n(ls, n): return sorted(ls, reverse=true)[:n]
几乎所有人都知道,堆的时间复杂度是 o(n log k),排序函数的时间复杂度是 o(n log n)。
看来第一个解决方案比第二个更好。但在python中却不是这样。
看最终代码:
import time def benchmark(func, *args) -> float: start = time.perf_counter() func(*args) end = time.perf_counter() return end - start def find_max_n_heapq(ls, n): import heapq return heapq.nlargest(n, ls) def find_max_n_python_heap(nums, n): if n <= 0: return [] max_heap = [] for num in nums: if len(max_heap) < n: max_heap.append(num) # call sift_down for i in range((len(max_heap) - 2) // 2, -1, -1): _sift_down(max_heap, i) elif num > max_heap[0]: max_heap[0] = num _sift_down(max_heap, 0) return max_heap def _sift_down(heap, index): left = 2 * index + 1 right = 2 * index + 2 largest = index if left < len(heap) and heap[left] > heap[largest]: largest = left if right < len(heap) and heap[right] > heap[largest]: largest = right if largest != index: heap[index], heap[largest] = heap[largest], heap[index] _sift_down(heap, largest) def find_max_n_sorted(ls, n): return sorted(ls, reverse=True)[:n] # test import random for n in range(10, 10000, 100): ls = [random.randint(1, 100) for _ in range(n)] print(f"n = {n}") print(f"Use Heapq: {benchmark(find_max_n_heapq, ls, n)}") print(f"Python Heapq: {benchmark(find_max_n_python_heap, ls, n)}") print(f"Sorted : {benchmark(find_max_n_sorted, ls, n)}")
我在python3.11 vscode中运行,结果如下:
n 不大
使用heapq:0.002430099993944168
python 堆:0.06343129999004304
排序:9.280000813305378e-05
n = 910
使用堆:9.220000356435776e-05
python 堆:0.07715500006452203
排序:9.360001422464848e-05
n = 920
使用堆:9.440002031624317e-05
python 堆:0.06573969998862594
排序:0.00012450001668184996
n = 930
使用堆:9.689992293715477e-05
python 堆:0.06760239996947348
排序:9.66999214142561e-05
n = 940
使用堆:9.600003249943256e-05
python 堆:0.07372559991199523
排序:9.680003859102726e-05
n = 950
使用堆:9.770004544407129e-05
python 堆:0.07306570000946522
排序:0.00011979998089373112
n = 960
使用堆:9.980006143450737e-05
python 堆:0.0771204000338912
排序:0.00022829999215900898
n = 970
使用堆:0.0001601999392732978
python 堆:0.07493270002305508
排序:0.00010840001050382853
n = 980
使用堆:9.949994273483753e-05
python 堆:0.07698320003692061
排序:0.00010300008580088615
n = 990
使用堆:9.979994501918554e-05
python 堆:0.0848745999392122
排序:0.00012620002962648869
如果n很大?
n = 10000
使用堆:0.003642000025138259
python 堆:9.698883199947886
排序:0.00107999995816499
n = 11000
使用heapq:0.0014836000045761466
python 堆:10.537632800056599
排序:0.0012236000038683414
n = 12000
使用heapq:0.001384599949233234
python 堆:12.328411899972707
排序:0.0013226999435573816
n = 13000
使用heapq:0.0020017001079395413
python 堆:15.637207800056785
排序:0.0015075999544933438
n = 14000
使用heapq:0.0017026999266818166
python 堆:17.298848500009626
排序:0.0016967999981716275
n = 15000
使用堆:0.0017773000290617347
python 堆:20.780625900020823
排序:0.0017105999868363142
我发现了什么以及如何改进它
当n很大时,sorted会花费一点时间(有时甚至比使用heapq更好),但python heapq会花费很多时间。
- 为什么sorted花费的时间很少,而python heapq花费的时间却很多?
- 因为sorted()是python中的内置函数,你可以找到关于它的python官方文档。
bulit-in 函数比 heapq 更快,因为它是用 c 编写的,c 是一种编译语言。
- 如何改善?
- 您可以使用内置函数sorted()代替heapq.sort()来提高代码的性能。 sorted() 函数是 python 中的内置函数,它是用 c 实现的,因此比 heapq.sort() 快得多
脑震荡
当我们处理大数据时,我们应该使用内置函数而不是 heapq.sort() 来提高代码的性能。在处理大数据时,我们必须警惕时间复杂度陷阱。有时时间复杂度陷阱是不可避免的,但我们应该尽量避免它们。
关于我
大家好,我是梦沁园。我是一名学生。我喜欢学习新事物。
你可以看我的github:[mengqinyuan的github][https://github.com/mengqinyuan]
今天关于《“警惕时间复杂度陷阱”》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于的内容请关注golang学习网公众号!

- 上一篇
- 数学在机器学习中的重要性:初学者的观点

- 下一篇
- PHP框架选型全攻略,为项目保驾护航
-
- 文章 · python教程 | 18分钟前 |
- Python数据可视化技巧及实现攻略
- 155浏览 收藏
-
- 文章 · python教程 | 8小时前 | Python XML解析 xpath lxml xml.etree.ElementTree
- Python解析XML文件的正确姿势
- 415浏览 收藏
-
- 文章 · python教程 | 10小时前 |
- Python处理表单数据的技巧与攻略
- 235浏览 收藏
-
- 文章 · python教程 | 11小时前 |
- Ubuntu22.04源码编译Python3.12:依赖详解
- 377浏览 收藏
-
- 文章 · python教程 | 11小时前 |
- Python热力图绘制教程与实战示例
- 136浏览 收藏
-
- 文章 · python教程 | 11小时前 |
- python编程语言优势与其他语言对比
- 123浏览 收藏
-
- 文章 · python教程 | 12小时前 |
- Python函数定义及调用全解析
- 240浏览 收藏
-
- 文章 · python教程 | 12小时前 | Matplotlib 性能优化 数据可视化 基本使用 高级定制
- Pythonmatplotlib绘图技巧与示例详解
- 433浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 可图AI 2.0图片生成
- 可图AI 2.0 是快手旗下的新一代图像生成大模型,支持文本生成图像、图像编辑、风格转绘等全链路创作需求。凭借DiT架构和MVL交互体系,提升了复杂语义理解和多模态交互能力,适用于广告、影视、非遗等领域,助力创作者高效创作。
- 3次使用
-
- 毕业宝AIGC检测
- 毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
- 24次使用
-
- AI Make Song
- AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
- 33次使用
-
- SongGenerator
- 探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
- 31次使用
-
- BeArt AI换脸
- 探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
- 35次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览