当前位置:首页 > 文章列表 > 文章 > python教程 > 数学在机器学习中的重要性:初学者的观点

数学在机器学习中的重要性:初学者的观点

来源:dev.to 2024-08-01 18:45:48 0浏览 收藏

小伙伴们有没有觉得学习文章很有意思?有意思就对了!今天就给大家带来《数学在机器学习中的重要性:初学者的观点》,以下内容将会涉及到,若是在学习中对其中部分知识点有疑问,或许看了本文就能帮到你!

数学在机器学习中的重要性:初学者的观点

当我第一次开始机器学习之旅时,我很高兴能深入算法、数据和预测的世界。然而,我很快意识到,要真正理解并在这个领域取得优异成绩,扎实掌握数学是至关重要的。随着我继续学习 Python 并探索机器学习的深度,我开始认识到数学在构建模型、优化性能和做出准确预测方面所发挥的关键作用。

为什么数学在机器学习中很重要
数学是机器学习的基础。它是算法发挥作用并帮助我们理解正在处理的数据的原因。如果没有数学,就不可能理解模型的内部运作或调整模型以获得更好的性能。机器学习背后的数学涉及各个领域,包括线性代数、微积分、概率和统计学。

例如,线性代数对于数据操作和转换至关重要,这是为机器学习模型准备数据的关键步骤。另一方面,微积分用于梯度下降等优化技术,这是通过最小化预测误差来训练模型的关键。概率和统计是进行预测和评估模型性能的基础,确保我们的模型不仅准确而且可靠。

机器学习的关键数学概念
1.线性代数
线性代数都是关于向量和矩阵的,它们是机器学习中数据的构建块。矩阵运算(例如乘法和求逆)可用于主成分分析 (PCA) 等算法中以进行降维,也可用于神经网络中以在数据通过各层时对其进行转换。

例如,在 PCA 中,我们使用特征向量和特征值(植根于线性代数的概念)来识别捕获数据中最大方差的主成分。这有助于降低数据集的维度,使模型更加高效,而不会丢失重要信息。

2.微积分
微积分主要用于优化,这是训练机器学习模型的核心。最常见的例子是梯度下降,这是一种通过调整模型参数来最小化成本函数的迭代方法。了解导数和偏导数有助于理解输入的变化如何影响输出,这在微调模型时至关重要。

例如,在训练神经网络时,我们使用反向传播,这种技术涉及通过应用微积分的链式法则来计算损失函数相对于每个权重的梯度。这允许模型通过向减少误差的方向更新权重来学习。

3.概率与统计
概率通过量化不确定性来帮助做出预测。许多机器学习算法,例如朴素贝叶斯和贝叶斯网络,都是基于概率论的。统计数据用于解释数据、评估模型和验证结果。在评估模型的性能时,假设检验、置信区间和 p 值等概念至关重要。

在机器学习环境中,理解概率分布(例如正态分布和二项分布)对于数据建模至关重要。例如,在逻辑回归中,我们使用 sigmoid 函数对二元结果的概率进行建模,该函数源自逻辑分布。

4.多变量微积分和优化
在处理复杂模型(例如深度学习网络)时,我们经常遇到多变量函数。了解如何使用梯度下降等技术在这些函数中找到最小值或最大值对于优化模型性能至关重要。

在深度学习中,使用 Adam 或 RMSprop 等优化算法来动态调整学习率,确保更快地收敛到最优解。这些算法建立在多变量微积分和数值优化的原理之上。

如何为机器学习学习数学
在编程的同时学习数学似乎令人畏惧,但通过正确的方法绝对可以实现。以下是一些对我有帮助的提示:

从基础知识开始: 在深入研究高级主题之前,请确保您对基础知识有深入的了解。复习代数和几何等高中数学概念,因为它们通常是更复杂想法的基础。

_使用互动资源:_在线课程,例如 Khan Academy 或 Coursera 上的课程,提供互动课程,让数学学习变得更有吸引力。这些平台经常提供练习和测验来测试您的理解能力。

用代码练习:直接在代码中应用数学概念有助于巩固你的理解。例如,尝试在 Python 中从头开始实现梯度下降等算法。这种实践方法将使您更深入地了解数学在机器学习中的应用。

渐进式学习: 不要匆忙浏览材料。在继续下一个概念之前,花时间充分理解每个概念。深入了解几个主题比肤浅地掌握许多主题要好。

_需要时寻求帮助:_如果遇到困难,请毫不犹豫地寻求帮助。加入在线社区,例如 Stack Overflow 或 Reddit,您可以在其中提出问题并向有类似经历的其他人学习。

我的学习经历
作为目前正在学习 Python、机器学习和机器学习数学的人,我可以证明理解算法背后的数学的重要性。起初,数学概念似乎令人生畏,但通过不断的实践和研究,它们开始变得有意义。我发现将复杂的想法分解成更小、更易于管理的部分可以帮助我更好地掌握它们。

例如,当我第一次遇到梯度下降时,我很难理解算法如何调整模型中的权重。然而,通过重新审视微积分的基础知识并在 Python 中实现算法,我能够看到实际的过程,这为我澄清了这个概念。

结论
数学是机器学习工具箱中的重要工具。它不仅帮助我们理解算法的工作原理,还使我们能够改进和优化它们。虽然掌握数学的过程可能充满挑战,但这是一次有益的经历,可以加深对机器学习的理解。我鼓励所有初学者接受机器学习的数学方面,因为它将大大增强您构建和理解模型的能力。
请记住,每一位伟大的机器学习工程师都是从您现在所在的位置开始的,因此请继续学习、练习和探索。当您深入探索机器学习的迷人世界时,您为理解数学而付出的努力将会得到回报。

今天带大家了解了的相关知识,希望对你有所帮助;关于文章的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~

版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
如何使用 Beautiful Soup 从公共网络中提取数据如何使用 Beautiful Soup 从公共网络中提取数据
上一篇
如何使用 Beautiful Soup 从公共网络中提取数据
“警惕时间复杂度陷阱”
下一篇
“警惕时间复杂度陷阱”
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 千音漫语:智能声音创作助手,AI配音、音视频翻译一站搞定!
    千音漫语
    千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
    192次使用
  • MiniWork:智能高效AI工具平台,一站式工作学习效率解决方案
    MiniWork
    MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
    193次使用
  • NoCode (nocode.cn):零代码构建应用、网站、管理系统,降低开发门槛
    NoCode
    NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
    191次使用
  • 达医智影:阿里巴巴达摩院医疗AI影像早筛平台,CT一扫多筛癌症急慢病
    达医智影
    达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
    198次使用
  • 智慧芽Eureka:更懂技术创新的AI Agent平台,助力研发效率飞跃
    智慧芽Eureka
    智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
    213次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码