当前位置:首页 > 文章列表 > 文章 > python教程 > 性能追求第二部分:Perl 与 Python

性能追求第二部分:Perl 与 Python

来源:dev.to 2024-07-31 12:15:40 0浏览 收藏

学习文章要努力,但是不要急!今天的这篇文章《性能追求第二部分:Perl 与 Python》将会介绍到等等知识点,如果你想深入学习文章,可以关注我!我会持续更新相关文章的,希望对大家都能有所帮助!

性能追求第二部分:Perl 与 Python


运行了一个玩具性能示例后,我们现在将稍微偏离主题并将性能与
进行对比 一些 python 实现。首先让我们设置计算阶段,并提供命令行
python 脚本的功能。

import argparse
import time
import math
import numpy as np
import os
from numba import njit
from joblib import parallel, delayed

parser = argparse.argumentparser()
parser.add_argument("--workers", type=int, default=8)
parser.add_argument("--arraysize", type=int, default=100_000_000)
args = parser.parse_args()
# set the number of threads to 1 for different libraries
print("=" * 80)
print(
    f"\nstarting the benchmark for {args.arraysize} elements "
    f"using {args.workers} threads/workers\n"
)

# generate the data structures for the benchmark
array0 = [np.random.rand() for _ in range(args.arraysize)]
array1 = array0.copy()
array2 = array0.copy()
array_in_np = np.array(array1)
array_in_np_copy = array_in_np.copy()

这是我们的参赛者:

  • 基础python
  for i in range(len(array0)):
    array0[i] = math.cos(math.sin(math.sqrt(array0[i])))
  • numpy(单线程)
np.sqrt(array_in_np, out=array_in_np)
np.sin(array_in_np, out=array_in_np)
np.cos(array_in_np, out=array_in_np)
  • joblib(请注意,这个示例不是真正的就地示例,但我无法使用 out 参数使其运行)
def compute_inplace_with_joblib(chunk):
    return np.cos(np.sin(np.sqrt(chunk))) #parallel function for joblib

chunks = np.array_split(array1, args.workers)  # split the array into chunks
numresults = parallel(n_jobs=args.workers)(
        delayed(compute_inplace_with_joblib)(chunk) for chunk in chunks
    )# process each chunk in a separate thread
array1 = np.concatenate(numresults)  # concatenate the results
  • 努巴
@njit
def compute_inplace_with_numba(array):
    np.sqrt(array,array)
    np.sin(array,array)
    np.cos(array,array)
    ## njit will compile this function to machine code
compute_inplace_with_numba(array_in_np_copy)

这是计时结果:

in place in (  base python): 11.42 seconds
in place in (python joblib): 4.59 seconds
in place in ( python numba): 2.62 seconds
in place in ( python numpy): 0.92 seconds

numba 出奇的慢!?难道是由于 mohawk2 在 irc 交流中关于此问题指出的编译开销造成的吗?
为了测试这一点,我们应该在执行基准测试之前调用compute_inplace_with_numba一次。这样做表明 numba 现在比 numpy 更快。

in place in (  base python): 11.89 seconds
in place in (python joblib): 4.42 seconds
in place in ( python numpy): 0.93 seconds
in place in ( python numba): 0.49 seconds
最后,我决定在同一个例子中使用 base r 来骑行:


n<-50000000
x<-runif(n)
start_time <- sys.time()
result <- cos(sin(sqrt(x)))
end_time <- sys.time()

# calculate the time taken
time_taken <- end_time - start_time

# print the time taken
print(sprintf("time in base r: %.2f seconds", time_taken))
产生以下计时结果:


Time in base R: 1.30 seconds
与 perl 结果相比,我们注意到此示例的以下内容:

    基础 python 中的就地操作比 perl
  • 慢约 3.5 单线程 pdl 和 numpy 给出了几乎相同的结果,紧随其后的是基础 r
  • 未能考虑 numba 的编译开销会产生
  • 错误
  • 的印象,即它比 numpy 慢。考虑到编译开销,numba 比 numpy 快 2 倍 joblib 的并行化确实改进了基础 python,但仍然不如单线程 perl 实现
  • 多线程 pdl(和 openmp)碾压(不是崩溃!)所有语言中的所有其他实现。 希望这个帖子 提供了一些值得思考的东西 用于下一次数据/计算密集型操作的语言。 本系列的下一部分将研究在 c 中使用数组的相同示例。最后一部分将(希望)提供有关内存局部性的影响以及使用动态类型语言所产生的开销的一些见解。

以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于文章的相关知识,也可关注golang学习网公众号。

版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
PHP框架在实际项目中部署和维护策略PHP框架在实际项目中部署和维护策略
上一篇
PHP框架在实际项目中部署和维护策略
golang框架中推荐使用的中间件有哪些?
下一篇
golang框架中推荐使用的中间件有哪些?
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3183次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3394次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3426次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4531次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3803次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码