当前位置:首页 > 文章列表 > 文章 > python教程 > Python特征工程与选择技巧全解析

Python特征工程与选择技巧全解析

2025-08-15 23:18:34 0浏览 收藏

大家好,今天本人给大家带来文章《Python特征工程与选择方法详解》,文中内容主要涉及到,如果你对文章方面的知识点感兴趣,那就请各位朋友继续看下去吧~希望能真正帮到你们,谢谢!

特征工程的关键步骤和特征选择方法包括:缺失值处理、类别编码、标准化/归一化、多项式特征生成;特征选择方法有方差选择法、相关系数法、基于模型的特征选择、递归特征消除。在Python中,缺失值处理可用SimpleImputer或pandas.fillna(),类别编码使用OneHotEncoder或LabelEncoder,标准化/归一化借助StandardScaler和MinMaxScaler,多项式特征通过PolynomialFeatures生成。特征选择方面,方差选择法(VarianceThreshold)用于去除低方差特征,相关系数法(SelectKBest结合f_classif/mutual_info_classif)评估特征与目标的相关性,基于模型的特征选择(SelectFromModel)利用Lasso或随机森林等模型评估特征重要性,递归特征消除(RFE)则逐步剔除不重要的特征。实际应用中应先进行数据基础处理再选特征,结合业务理解,多尝试不同方法并借助可视化分析提升效果。

Python怎样实现特征工程?特征选择方法

特征工程是机器学习流程中非常关键的一环,它直接影响模型的性能。Python 有多个库可以用来实现特征工程和特征选择,比如 scikit-learnpandasnumpy 等。下面从实际操作的角度出发,介绍几种常见的做法。

Python怎样实现特征工程?特征选择方法

特征工程的基本步骤

特征工程主要包括数据清洗、特征构造、特征转换等几个方面。在 Python 中,常用的做法如下:

  • 缺失值处理:可以用 SimpleImputer 或者直接用 pandas.fillna() 填充或删除。
  • 类别编码:使用 OneHotEncoderLabelEncoder 来处理分类变量。
  • 标准化/归一化StandardScalerMinMaxScaler 是常用的工具。
  • 多项式特征生成:通过 PolynomialFeatures 可以自动生成交互项和高次项。

举个例子,如果你有一个包含年龄、性别、收入的数据集,你可以将“性别”进行独热编码,对“年龄”和“收入”做标准化处理,然后再组合出“年龄与收入的乘积”作为新特征。

Python怎样实现特征工程?特征选择方法

特征选择的方法有哪些?

特征选择是为了去除冗余信息、减少过拟合,并提升模型训练效率。以下是几种常见方法:

1. 方差选择法(VarianceThreshold)

适用于去除那些几乎不变的特征,因为它们提供的信息量太少。

Python怎样实现特征工程?特征选择方法
from sklearn.feature_selection import VarianceThreshold
selector = VarianceThreshold(threshold=0.01)
X_high_variance = selector.fit_transform(X)

2. 相关系数法(SelectKBest + f_classif / mutual_info_classif)

适合用于评估每个特征与目标变量之间的相关性,常用于初步筛选。

from sklearn.feature_selection import SelectKBest, f_classif
selector = SelectKBest(score_func=f_classif, k=5)
X_new = selector.fit_transform(X, y)

3. 基于模型的特征选择(SelectFromModel)

使用像 Lasso、树模型(如随机森林)来评估特征重要性,然后选择重要的特征。

from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectFromModel
sel = SelectFromModel(RandomForestClassifier(n_estimators=100))
sel.fit(X, y)
X_selected = sel.transform(X)

4. 递归特征消除(RFE)

逐步剔除最不重要的特征,直到达到指定数量为止。

from sklearn.feature_selection import RFE
model = RandomForestClassifier()
rfe = RFE(estimator=model, n_features_to_select=5)
X_rfe = rfe.fit_transform(X, y)

实际应用中的几点建议

  • 先做基础处理再选特征:确保数据质量后再进行特征选择,否则可能选出的是噪声。
  • 结合业务理解:有些看似不相关的特征,可能在业务逻辑中有意义。
  • 多尝试不同方法:没有一种特征选择方法适用于所有场景,最好结合交叉验证比较效果。
  • 可视化辅助分析:比如画出特征重要性图、相关系数热力图,有助于发现关键特征。

例如,在电商用户流失预测中,原始数据可能包含“最近一次购买时间”,我们可以从中提取“距离当前天数”这个新特征,往往比原始字段更有预测价值。


基本上就这些了。Python 提供了很完善的工具支持,关键是根据具体问题灵活运用。

以上就是《Python特征工程与选择技巧全解析》的详细内容,更多关于的资料请关注golang学习网公众号!

JavaScript优化技巧:数据结构与循环合并方法JavaScript优化技巧:数据结构与循环合并方法
上一篇
JavaScript优化技巧:数据结构与循环合并方法
Golang错误码规范与管理方案
下一篇
Golang错误码规范与管理方案
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 千音漫语:智能声音创作助手,AI配音、音视频翻译一站搞定!
    千音漫语
    千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
    175次使用
  • MiniWork:智能高效AI工具平台,一站式工作学习效率解决方案
    MiniWork
    MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
    174次使用
  • NoCode (nocode.cn):零代码构建应用、网站、管理系统,降低开发门槛
    NoCode
    NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
    176次使用
  • 达医智影:阿里巴巴达摩院医疗AI影像早筛平台,CT一扫多筛癌症急慢病
    达医智影
    达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
    180次使用
  • 智慧芽Eureka:更懂技术创新的AI Agent平台,助力研发效率飞跃
    智慧芽Eureka
    智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
    194次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码