高效且准确,郑州大学团队开发新AI工具识别药物-靶标相互作用
各位小伙伴们,大家好呀!看看今天我又给各位带来了什么文章?本文标题是《高效且准确,郑州大学团队开发新AI工具识别药物-靶标相互作用》,很明显是关于科技周边的文章哈哈哈,其中内容主要会涉及到等等,如果能帮到你,觉得很不错的话,欢迎各位多多点评和分享!
准确识别药物-靶标相互作用(DTI)是药物发现和药物重新定位过程中的关键步骤之一。
目前,许多基于计算的模型已被提出,用于预测 DTI,并取得了一些显著的进步。
然而,这些方法很少关注如何以适当的方式融合与药物和靶标相关的多视角相似性网络。此外,如何充分结合已知的相互作用关系来准确表示药物和靶标尚未得到很好的研究。因此,提高 DTI 预测模型的准确性仍然是必要的。
在最新的研究中,郑州大学、电子科技大学团队提出了一种新方法 MIDTI。该方法采用多视图相似性网络融合策略和深度交互式注意机制来预测药物-靶标相互作用。
结果表明,MIDTI 在 DTI 预测任务上的表现明显优于其他基线方法。消融实验的结果也证实了多视角相似网络融合策略中注意力机制和深度交互注意力机制的有效性。
该研究以「Drug–target interaction predictions with multi-view similarity network fusion strategy and deep interactive attention mechanism」为题,于 2024 年 6 月 6 日发布在《Bioinformatics》。
在新药研发与再利用过程中占据核心地位,传统湿实验方法成本高昂、耗时长久,促使研究者转向计算辅助的药物筛选方法来加速进程。
计算型 DTI 预测方法
主要分为:
- 基于结构的方法:依赖药物分子与靶点结构及结合位点,但受限于某些靶点如膜蛋白结构信息的缺乏。
- 基于配体的方法:基于已知活性小分子建立模型,但在靶点结合配体数量有限时效果不佳。
- 基于机器学习的方法:通过提取药物化学结构和靶点基因序列特征进行二元分类,预测潜在 DTI。
机器学习方法的局限性
目前的方法仅基于药物和靶点自身结构学习表征,忽视了 DTI 对之间的相互作用。
异构网络构建
生物实体间关系蕴含丰富语义信息,构建融合异构信息的网络有助于系统理解 DTI。
MIDTI 方法
郑州大学团队提出了 MIDTI,一种预测 DTI 的新方法,基于:
- 多视角相似性网络融合策略
- 深度交互式注意力机制
MIDTI 的整体框架
图示:MIDTI 的整体框架(来源:论文)
步骤:
- 构建相似性网络:MIDTI 根据药物关联信息构建药物相似性网络,并采用融合策略获得集成的药物相似性网络;同样地建立集成的目标相似性网络。
- 学习嵌入:MIDTI 采用 GCN 从集成药物相似性网络、集成目标相似性网络、药物-目标二分网络和药物-目标异构网络中学习药物和目标嵌入。
- 判别嵌入:MIDTI 利用交互式注意机制,根据已知的 DTI 关系学习判别嵌入。
- 预测 DTI:将学习到的药物-靶标对表征输入 MLP 中,以预测 DTI。
图示:多视角药物相似性网络融合策略的四个步骤。(来源:论文)
为了评估 MIDTI 的性能,研究者采用了多种评估指标,包括准确率(ACC)、曲线下面积(AUC)、精确-召回曲线下面积(AUPR)、F1 分数和马修斯相关系数(MCC)。研究人员将 MIDTI 与其他十种竞争性方法进行了比较,这些方法包括随机森林、图卷积网络、图注意力网络、MMGCN、GraphCDA 和 DTINet 等。
MIDTI 在 ACC、AUC 和 AUPR 指标上分别获得了 0.9340、0.9787和 0.9701 的分数,比 MMGCN 和 GraphCDA 的最高分数高出 2.55%、2.31% 和 2.30%。这表明 MIDTI 在预测药物-靶点相互作用方面是最具竞争力的方法之一。在不同正负样本比例的实验中,MIDTI 也表现出了优秀的性能。
研究还展示了 MIDTI 学习到的药物-靶点嵌入的可视化结果,使用 t-SNE 工具将嵌入映射到二维空间。随着训练轮数的增加,正例和反例逐渐被区分开来,这证明了 MIDTI 所学习的嵌入具有良好的区分力和解释性,从而提高了 DTI 预测的准确性。
MIDTI 的核心贡献在于:
- 它提出了一种新的多视角相似网络融合策略,可以在无监督的方式下整合不同相似网络;
- 使用深度交互注意力机制,根据已知的 DTI 信息学习药物和靶点的判别性表示;
- 大量实验证明 MIDTI 在 DTI 预测任务上优于其他先进的方法。
总之,MIDTI 是一种高效且准确的药物-靶点相互作用预测方法,其创新点在于利用多视角信息和深度注意力机制来增强预测能力。
研究人员表示,接下来将从以下两个方面开展工作。首先,利用药物和靶标的其他相关数据源进行嵌入学习。其次,MIDTI 可以应用于其他链接预测问题,例如 miRNA 与疾病关联预测。
相关报道:https://academic.oup.com/bioinformatics/article/40/6/btae346/7688335
以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于科技周边的相关知识,也可关注golang学习网公众号。

- 上一篇
- 专为五大科学领域定制,NASA与IBM合作开大语言模型INDUS

- 下一篇
- TrendForce 集邦咨询:预估三季度 DRAM 内存价格整体涨幅达 8~13%
-
- 科技周边 · 人工智能 | 1小时前 | 即梦AI客服 问题反馈
- 即梦ai客服支持与问题反馈渠道大揭秘
- 293浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 操作系统升级补丁:设备盔甲还是致命陷阱?
- 367浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 可图AI图片生成
- 探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
- 36次使用
-
- MeowTalk喵说
- MeowTalk喵说是一款由Akvelon公司开发的AI应用,通过分析猫咪的叫声,帮助主人理解猫咪的需求和情感。支持iOS和Android平台,提供个性化翻译、情感互动、趣味对话等功能,增进人猫之间的情感联系。
- 32次使用
-
- Traini
- SEO摘要Traini是一家专注于宠物健康教育的创新科技公司,利用先进的人工智能技术,提供宠物行为解读、个性化训练计划、在线课程、医疗辅助和个性化服务推荐等多功能服务。通过PEBI系统,Traini能够精准识别宠物狗的12种情绪状态,推动宠物与人类的智能互动,提升宠物生活质量。
- 32次使用
-
- 可图AI 2.0图片生成
- 可图AI 2.0 是快手旗下的新一代图像生成大模型,支持文本生成图像、图像编辑、风格转绘等全链路创作需求。凭借DiT架构和MVL交互体系,提升了复杂语义理解和多模态交互能力,适用于广告、影视、非遗等领域,助力创作者高效创作。
- 33次使用
-
- 毕业宝AIGC检测
- 毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
- 48次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览