当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 专为五大科学领域定制,NASA与IBM合作开大语言模型INDUS

专为五大科学领域定制,NASA与IBM合作开大语言模型INDUS

来源:机器之心 2024-06-27 19:51:59 0浏览 收藏

最近发现不少小伙伴都对科技周边很感兴趣,所以今天继续给大家介绍科技周边相关的知识,本文《专为五大科学领域定制,NASA与IBM合作开大语言模型INDUS》主要内容涉及到等等知识点,希望能帮到你!当然如果阅读本文时存在不同想法,可以在评论中表达,但是请勿使用过激的措辞~


专为五大科学领域定制,NASA与IBM合作开大语言模型INDUS
INDUS 以南天星座命名,是一套全面的大型语言模型,支持五个科学领域。(来源:NASA)

编辑 | KX

在大量数据上训练的大型语言模型 (LLM) 在自然语言理解和生成任务上表现出色。大多数流行的 LLM 使用 Wikipedia 等通用语料库进行训练,但词汇的分布变化导致特定领域的性能不佳。

受此启发,NASA 与 IBM 合作开发了 INDUS,这是一套全面的 LLM,专为地球科学、生物学、物理学、太阳物理学、行星科学和天体物理学领域量身定制,并使用从不同数据源的精选科学语料库进行训练。

INDUS 包含两类模型:编码器和句子 Transformer。编码器将自然语言文本转换为 LLM 可以处理的数字编码。INDUS 编码器在包含天体物理学、行星科学、地球科学、太阳物理学、生物和物理科学数据的 600 亿个 tokens 的语料库上进行训练。

相关研究以「INDUS: Effective and Efficient Language Models for Scientific Applications」为题,发布在 arXiv 预印平台。

专为五大科学领域定制,NASA与IBM合作开大语言模型INDUS

论文链接:https://arxiv.org/abs/2405.10725

在通用领域语料库上训练的 LLM 在自然语言处理 (NLP) 任务上表现出色。然而,先前的研究表明,使用特定领域语料库训练的 LLM 在专门任务上表现更好。

比如,有研究者已经开发了几个特定领域的 LLM,例如 SCIBERT、BIOBERT、MATBERT、BATTERYBERT 和 SCHOLARBERT,目的是提高领域内 NLP 任务的准确性。

INDUS:一套全面的 LLM

在该研究中,研究人员特别关注与地球、天体、太阳和太阳系内的行星相关的跨学科领域,例如物理学、地球科学、天体物理学、太阳物理学、行星科学和生物学。

专为五大科学领域定制,NASA与IBM合作开大语言模型INDUS

图示:INDUS 模型概览。(来源:论文)

INDUS 是一组基于编码器的 LLM,专注于这些感兴趣的领域,用不同来源的精心策划的语料库进行训练。INDUS 中包含的 50,000 个词汇中有超过一半是用于训练的特定科学领域所独有的。INDUS 编码器模型对大约 2.68 亿个文本对(包括标题/摘要和问题/答案)上的句子 Transformer 模型进行微调。

具体而言:

1. 利用字节对编码算法,从精选的科学语料库中构建了定制的标记器 INDUSBPE。

2. 使用精选的科学语料库和 INDUSBPE 标记器预训练了多个仅编码器的 LLM。进一步通过使用对比学习目标对仅编码器模型进行微调来创建句子嵌入模型,以学习「通用」句子嵌入。使用知识提炼技术训练了这些模型的更小、更高效的版本。

3. 创建了三个新的科学基准数据集,CLIMATE-CHANGE NER(实体识别任务)、NASA-QA(提取问答任务)和 NASA-IR(检索任务),以进一步加速这一多学科领域的研究。

4. 通过实验结果,展示了模型在这些基准任务以及现有领域特定基准上的出色表现,超越了 RoBERTa 等通用模型以及 SCIBERT 等科学领域编码器。

比非领域特定 LLM 表现更好

通过为 INDUS 提供领域特定词汇,研究团队在生物医学任务基准、科学问答基准和地球科学实体识别测试中,比开放的、非领域特定 LLM 表现更好。

将 INDUS 模型与类似大小的开源模型 RoBERTaBASE、SCIBERT、MINILM 和 TINYBERT 进行了比较。

在自然语言理解任务上,在基础模型中,INDUSBASE 在微观/宏观平均值上明显优于通用 RoBERTa 模型,同时在生物领域特定的对应模型 SCIBERT 中也取得了竞争性的表现。

表:BLURB 的评估结果。(来源:论文)

专为五大科学领域定制,NASA与IBM合作开大语言模型INDUS

BLURB 在气候变化 NER 任务上明显优于相应的基线模型,表明了对大型特定领域数据进行训练的有效性。

表:气候变化 NER 基准结果。(来源:论文)

专为五大科学领域定制,NASA与IBM合作开大语言模型INDUS

在 NASA-QA(提取问答任务)中,使用相关的 SQuAD 对扩充训练集进行微调。所有模型都经过 15 epochs 的微调,结果观察到 INDUSBASE 的表现优于所有类似规模的模型,而 INDUSSMALL 的表现相对较强。

表:NASA-QA 基准结果。(来源:论文)

专为五大科学领域定制,NASA与IBM合作开大语言模型INDUS

在检索任务中,在 NASA-IR 数据集和 BEIR 基准上评估了 INDUS 模型,该基准由 12 个涵盖各种领域的检索任务组成。

如下表所示,两个句子嵌入模型在 NASA-IR 任务上的表现都明显优于基线,同时在几个 BEIR 任务上仍保持良好的性能。

表:NASA-IR 和 BEIR 的评估结果。(来源:论文)

专为五大科学领域定制,NASA与IBM合作开大语言模型INDUS

研究人员还在单个 A100 GPU 上测量了 BEIR 自然问题集的 4,202 个测试查询中每个查询的平均检索时间。这个时间包括编码查询、语料库的时间以及检索相关文档的时间。值得注意的是,INDUS-RETRIEVERSMALL 在 NASA-IR 和 BEIR 上的表现都优于 INDUS-RETRIEVERBASE,同时速度快了约 4.6 倍。

IBM 研究员 Bishwaranjan Bhattacharjee 对整体方法进行了评论:「我们不仅拥有自定义词汇表,还拥有用于训练编码器模型的大型专业语料库和良好的训练策略,从而实现了卓越的性能。对于较小、较快的版本,我们使用神经架构搜索来获得模型架构,并使用知识提炼来对其进行训练,同时监督较大的模型。」

NASA 生物和物理科学 (BPS) 部门 Sylvain Costes 博士讨论了整合 INDUS 的好处:「将 INDUS 与开放科学数据存储库 (OSDR) 应用程序编程接口 (API) 集成使我们能够开发和试用聊天机器人,为浏览单个数据集提供更直观的搜索功能。我们目前正在探索改进 OSDR 内部策展数据系统的方法,利用 INDUS 来提高策展团队的工作效率并减少每天所需的手动工作量。」

参考内容:https://techxplore.com/news/2024-06-nasa-ibm-collaboration-indus-large.html

今天带大家了解了的相关知识,希望对你有所帮助;关于科技周边的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~

版本声明
本文转载于:机器之心 如有侵犯,请联系study_golang@163.com删除
托底再腾飞,领克07 EM-P经受5米高空坠落极限考验托底再腾飞,领克07 EM-P经受5米高空坠落极限考验
上一篇
托底再腾飞,领克07 EM-P经受5米高空坠落极限考验
高效且准确,郑州大学团队开发新AI工具识别药物-靶标相互作用
下一篇
高效且准确,郑州大学团队开发新AI工具识别药物-靶标相互作用
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 可图AI图片生成:快手可灵AI2.0引领图像创作新时代
    可图AI图片生成
    探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
    32次使用
  • MeowTalk喵说:AI猫咪语言翻译,增进人猫情感交流
    MeowTalk喵说
    MeowTalk喵说是一款由Akvelon公司开发的AI应用,通过分析猫咪的叫声,帮助主人理解猫咪的需求和情感。支持iOS和Android平台,提供个性化翻译、情感互动、趣味对话等功能,增进人猫之间的情感联系。
    30次使用
  • SEO标题Traini:全球首创宠物AI技术,提升宠物健康与行为解读
    Traini
    SEO摘要Traini是一家专注于宠物健康教育的创新科技公司,利用先进的人工智能技术,提供宠物行为解读、个性化训练计划、在线课程、医疗辅助和个性化服务推荐等多功能服务。通过PEBI系统,Traini能够精准识别宠物狗的12种情绪状态,推动宠物与人类的智能互动,提升宠物生活质量。
    28次使用
  • 可图AI 2.0:快手旗下新一代图像生成大模型,专业创作者与普通用户的多模态创作引擎
    可图AI 2.0图片生成
    可图AI 2.0 是快手旗下的新一代图像生成大模型,支持文本生成图像、图像编辑、风格转绘等全链路创作需求。凭借DiT架构和MVL交互体系,提升了复杂语义理解和多模态交互能力,适用于广告、影视、非遗等领域,助力创作者高效创作。
    31次使用
  • 毕业宝AIGC检测:AI生成内容检测工具,助力学术诚信
    毕业宝AIGC检测
    毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
    46次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码