当前位置:首页 > 文章列表 > Golang > Go教程 > 基于golang的简单分布式延时队列服务的实现

基于golang的简单分布式延时队列服务的实现

来源:脚本之家 2022-12-30 07:54:00 0浏览 收藏

本篇文章向大家介绍《基于golang的简单分布式延时队列服务的实现》,主要包括分布式、延时队列,具有一定的参考价值,需要的朋友可以参考一下。

一、引言

背景

我们在做系统时,很多时候是处理实时的任务,请求来了马上就处理,然后立刻给用户以反馈。但有时也会遇到非实时的任务,比如确定的时间点发布重要公告。或者需要在用户做了一件事情的X分钟/Y小时后,EG:

“PM:我们需要在这个用户通话开始10分钟后给予提醒给他们发送奖励”

对其特定动作,比如通知、发券等等。一般我接触到的解决方法中在比较小的服务里都会自己维护一个backend,但是随着这种backend和server增多,这种方法很大程度和本身业务耦合在一起,所以这时需要一个延时队列服务。

名词解释

topic_list队列:每一个来的延时请求都应该又一个延时主题参考kafka,在逻辑上划分出一个队列出来每个业务分开处理;

topic_info队列:每一个队列topic都存在一个新的队列里,每次扫描topic信息检测新的topic建立与销毁管理服务协程数量;

offset:当前消费的进度;

new_offset:新消费的进度,预备更迭offset;

topic_offset_lock:分布式锁。

二、设计目标

 功能清单

1、延时信息添加接口基于http调用

2、拥有存储队列特性,可保存近3天内的队列消费数据

3、提供消费功能

4、延时通知

性能指标

预计接口的调用量:单秒单类任务数3500,多秒单类任务数1300

压测结果:

简单压测

wrk写入qps:259.3s 写入9000条记录 单线程 无并发

触发性能/准确率:单秒1000,在测试机无延长。单秒3000时,偶尔出现1-2秒延迟。受内存和cpu影响。

三、系统设计

交互流程

时序图

本设计基于http接口调用,当向topic存在的队列中添加消息的时候,消息会被添加到相应topic队列的末尾储存,当添加到不存在的相应topic队列时,首先建立新topic队列,当定时器触发的时候或者分布式锁,抢到锁的实例先获得相应队列的offset,设置新offset,就可以释放锁了让给其他实例争抢,弹出队列头一定数量元素,然后拿到offset段的实例去存储中拿详细信息,在协程中处理,主要协程等待下次触发。然后添加协程去监控触发。

模块划分

1、队列存储模块

1·delay下的delay.base模块,主要负责接收写请求,将队列信息写入存储,不负责backend逻辑,调用存储模块

2、backend模块。delay下的delay.backend模块,负责时间触发扫描对应的topic队列,调用存储模块,主要负责访问读取存储模块,调用callback模块

1·扫描topic添加groutine

2·扫描topic_list消费信息

3·扫描topic_list如果一定时间没有消费到则关闭groutine

3、callback模块,主要负责发送已经到时间的数据,向相应服务通知

3、存储模块

1·分布式锁模块,系统多机部署,保证每次消费的唯一性,对每次topic消费的offset段进行上锁offset到new_offset段单机独享

2·topic管理列表,管理topic数量控制协程数

3·topic_list,消息队列

4·topic_info,消息实体,可能需要回调中会携带一些信息统一处理

4、唯一号生成模块。

五、缓存设计

目前使用全缓存模式

key设计:

topic管理list key: XX:DELAY_TOPIC_LIST type:list

topic_list key: XX:DELAY_SIMPLE_TOPIC_TASK-%s(根据topic分key) type:zset

topic_info key: XX:DELAY_REALL_TOPIC_TASK-%s(根据topic分key) type:hash

topic_offset key: XX:DELAY_TOPIC_OFFSET-%s(根据topic分key) type:string

topic_lock key: xx:DELAY_TOPIC_RELOAD_LOCK-%s(根据topic分key) type:string

六、接口设计

delay.task.addv1 (延时队列添加v1)

请求示例

curl -d 
'{
  "topic": "xxx", 								// 业务topic
  "timing_moment": ,							    // 单位秒,要定时时刻
  "content": "{}"								// 消息体,json串
}'
'http://127.0.0.1:xxxx/delay/task/add'

返回示例

{
  "dm_error": 0,
  "error_msg": "操作成功",
  "task_id":112345465765
}

pull回调方式返回(v2不再支持)

请求示例

curl -d 
'{
  "topic": "xxxx", 								// 业务topic
  "task_id":1324568798765							// taskid,选填,有则返回特定消息
}'
'http://127.0.0.1:xxxx/delay/task/pull'

返回示例

{
  "dm_error": 0,
  "error_msg": "操作成功"
  "content":"{"\xxx"\}"
}

delay.task.addv2 (延时队列添加v2)

请求示例

curl -d 
'{
  "topic": "xxx", 						// 业务topic
  "timing_moment": ,						// 单位秒,要定时时刻
  "content": "{                        // 消息内容(json string)
	"sn":"message.call",                  // 服务发现名字(或为配置服务名)
	"url":"/ev/tp/xxxx",                  // 回调url
	"xxx":"xxx"                       // 其他字段
  }"
}'
'http://127.0.0.1:xxxx/delay/task/add'

示例

curl -d '{
  "topic":"xxxx_push",
  "content":"{
    "uid":"111111",
    "sn":"other.server",
    "url":"/xxxx/callback",
    "msg_type":"gift",
  }",
  "timing_moment":1565700615
}' 
http://127.0.0.1:xxxx/delay/task/add

返回示例

{
  "dm_error": 0,
  "error_msg": "操作成功",
  "task_id":112345465765
}

七、MQ设计(v2不再支持)

关于kafka消费方式返回:

topic: delay_base_push

固定返回格式
{
  "topic": "xxxx",								// 业务topic
  "content": "{}"								// 单条生产消息content
}

八、其他设计

唯一号设计

调用存储模块,利用redis的自增结合逻辑生成唯一号具体逻辑如下:

func (c *CacheManager) OperGenTaskid() (uint64, error) {
	now := time.Now().Unix()
	key := c.getDelayTaskIdKey()
	reply, err := c.DelayRds.Do("INCR", key)
	if err != nil {
		log.Errorf("genTaskid INCR key:%s, error:%s", key, err)
		return 0, err
	}
	version := reply.(int64)
	if version == 1 {
    //默认认为1秒能创建100个任务
		c.DelayRds.Expire(key, time.Duration(100)*time.Second)
	}
	incrNum := version % 10000
	taskId := (uint64(now)*10000 + uint64(incrNum))
	log.Debugf("genTaskid INCR key:%s, taskId:%d", key, taskId)
	return taskId, nil
}

分布式锁设计

func (c *CacheManager) SetDelayTopicLock(ctx context.Context, topic string) (bool, error) {
	key := c.getDelayTopicReloadLockKey(topic)
	reply, err := c.DelayRds.Do("SET", key, "lock", "NX", "EX", 2)
	if err != nil {
		log.Errorf("SetDelayTopicLock SETNX key:%s, cal:%v, error:%s", key, "lock", err)
		return false, err
	}
	if reply == nil {
		return false, nil
	}
	log.Debugf("SetDelayTopicLock SETNXEX topic:%s lock:%d", topic, false)
	return true, nil
}

九、设计考虑

健壮性

熔断策略:

这版设计中有很多不足之处,当redis不可访问时,请求将大量积压给机器或者实例带来压力,导致其他服务不可用,所以采取降级策略(降级策略也有不足);在请求redis时加入重试,当重试次数多于报警次数,会记录一个原子操作atomic.StoreInt32(&stopFlag,1),其中stopFlag为一个全局的变量,在atomic.LoadInt32(&stopFlag)后,stopFlag的值为1则暂时不请求redis,同时记录当前时间,加入定时器,熔断器分为三个级别,开,关,半开,当定时器结束后stopFlag=2第二个定时将为半开状态计时,有概率访问redis,当成功次数到达阈值stopFlag=0,否则stopFlag=1继续计时

不足

 1、调用time定时

通常golang 写循环执行的定时任务大概用三种实现方式:

1、time.Sleep方法:

for {
  time.Sleep(time.Second)
  fmt.Println("test")
}

2、time.Tick函数:

t1:=time.Tick(3*time.Second)
for {
  select {
  case 

3、其中Tick定时任务,也可以先使用time.Ticker函数获取Ticker结构体,然后进行阻塞监听信息,这种方式可以手动选择停止定时任务,在停止任务时,减少对内存的浪费。

t:=time.NewTicker(time.Second)
for {
  select {
  case 

在最开始以为sleep是单独处理直接停掉了这个协程,所以第一版用的也是sleep,但是在收集资料后发现这几种方式都创建了timer,并加入了定时任务处理协程。实际上这两个函数产生的timer都放入了同一个timer堆(golang时间轮),都在定时任务处理协程中等待被处理。Tick,Sleep,time.After函数都使用的timer结构体,都会被放在同一个协程中统一处理,这样看起来使用Tick,Sleep并没有什么区别。实际上是有区别的,本文不是讨论golang定时执行任务time.sleep和time.tick的优劣,以后会在后续文章进行探讨。使用channel阻塞协程完成定时任务比较灵活,可以结合select设置超时时间以及默认执行方法,而且可以设置timer的主动关闭,所以,建议使用time.Tick完成定时任务。

2、存储模块问题

目前是全缓存,没有DB参与,首先redis(codis)的高可用是个问题,在熔断之后采取“不作为”的判断也是有问题的,所以对未来展望,首先是:

1·单机的数据结构使用多时间轮。为了减少数据的路程,将load数据的过程异步加载到机器,减少网络io所造成的时间损耗。同时也是减少对redis的依赖

2·引入ZooKeeper或者添加集群备份,leader。保证集群中至少有两台机器load一个topic的数据,leader可以协调消费保证高可用

今天关于《基于golang的简单分布式延时队列服务的实现》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

版本声明
本文转载于:脚本之家 如有侵犯,请联系study_golang@163.com删除
Go语言正则表达式的使用详解Go语言正则表达式的使用详解
上一篇
Go语言正则表达式的使用详解
golang 微服务之gRPC与Protobuf的使用
下一篇
golang 微服务之gRPC与Protobuf的使用
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    16次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    25次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    30次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    42次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    35次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码