当前位置:首页 > 文章列表 > Golang > Go问答 > 解读费布纳契数列:非递归与记忆递归的计时比较

解读费布纳契数列:非递归与记忆递归的计时比较

来源:stackoverflow 2024-03-28 15:33:29 0浏览 收藏
推广推荐
免费电影APP ➜
支持 PC / 移动端,安全直达

一分耕耘,一分收获!既然打开了这篇文章《解读费布纳契数列:非递归与记忆递归的计时比较》,就坚持看下去吧!文中内容包含等等知识点...希望你能在阅读本文后,能真真实实学到知识或者帮你解决心中的疑惑,也欢迎大佬或者新人朋友们多留言评论,多给建议!谢谢!

问题内容

看完麻省理工学院关于动态规划的讲座后,我想练习一下斐波那契。我首先编写了简单的递归实现,然后添加了记忆功能。这是记忆版本:

package main

import (
    "fmt"
)

func fib_memoized(n int, memo map[int]int64) int64 {
    memoized, ok := memo[n]
    if ok {
        return memoized
    }
    if n < 2 {
        return int64(n)
    }
    f := fib_memoized(n-2, memo) + fib_memoized(n-1, memo)
    memo[n] = f
    return f
}

func main() {
    memo := make(map[int]int64)
    for i := 0; i < 10000; i++ {
        fmt.printf("fib(%d) = %d\n", i, fib_memoized(i, memo))
    }
}

然后我继续编写该程序的非递归版本:

package main

import (
    "fmt"
)

func fib(n int) int64 {
    var f1 int64 = 1
    var f2 int64 = 0
    for i := 0; i < n; i++ {
        f1, f2 = f2, f1+f2
    }
    return f2
}

func main() {
    for i := 0; i < 10000; i++ {
        fmt.Printf("fib(%d) = %d\n", i, fib(i))
    }
}

令我困惑的是,记忆版本的性能似乎至少与非递归版本一样好,有时甚至超过它。当然,与简单的递归实现相比,我期望记忆化能够带来巨大的改进,但我只是无法弄清楚为什么/如何记忆化版本可以与非递归版本相当,甚至超越其非递归版本。 p>

我确实尝试查看两个版本的程序集输出(使用 go 工具编译 -s 获得),但无济于事。我仍然在记忆版本中看到 call 指令,在我看来,这应该会产生足够的开销来证明它至少比非递归版本稍微优于。

有更懂行的人可以帮助我了解发生了什么吗?

附注我知道整数溢出;我用了10000只是为了增加负载。

谢谢。


正确答案


需要记住的一件非常重要的事情:memo 在测试平台的迭代之间被保留。因此,记忆版本在 main 中的循环每次迭代最多有两次递归调用。 ie。您允许记忆版本在各个迭代之间保留内存,而迭代版本需要在每次迭代中从头开始计算。

下一点:
编写基准测试很棘手。微小的细节可能对结果产生重大影响。例如。对 printf 的调用很可能需要相当长的时间来执行,但实际上并没有考虑斐波那契计算的运行时间。我没有任何可用的环境来测试这些 io 操作对时序的实际影响有多大,但很可能相当大。特别是因为您的算法运行了相当小的 10000 次迭代,或者仅仅 100 微秒,如 @Brackens answer 中所示。

总结一下:
从基准测试中删除 io,在每次迭代中从空的 memo 开始,并增加迭代次数以获得更好的计时。

我认为您在问为什么记忆递归实现并不比迭代快很多执行。尽管您提到了您没有展示的“朴素递归实现”?

使用基准测试,您可以看到两者的性能具有可比性,也许迭代速度更快一些:

package kata

import (
    "fmt"
    "os"
    "testing"
)

func fib_memoized(n int, memo map[int]int64) int64 {
    memoized, ok := memo[n]
    if ok {
        return memoized
    }
    if n < 2 {
        return int64(n)
    }
    f := fib_memoized(n-2, memo) + fib_memoized(n-1, memo)
    memo[n] = f
    return f
}

func fib(n int) int64 {
    var f1 int64 = 1
    var f2 int64 = 0
    for i := 0; i < n; i++ {
        f1, f2 = f2, f1+f2
    }
    return f2
}

func benchmarkfib(b *testing.b) {
    out, err := os.create("/dev/null")
    if err != nil {
        b.fatal("can't open: ", err)
    }
    b.run("recursive memoized", func(b *testing.b) {
        memo := make(map[int]int64)
        for j := 0; j < b.n; j++ {
            for i := 0; i < 100; i++ {
                fmt.fprintf(out, "fib(%d) = %d\n", i, fib_memoized(i, memo))
            }
        }
    })
    b.run("iterative", func(b *testing.b) {
        for j := 0; j < b.n; j++ {
            for i := 0; i < 100; i++ {
                fmt.fprintf(out, "fib(%d) = %d\n", i, fib(i))
            }
        }
    })
}
% go test -bench=.
goos: darwin
goarch: amd64
pkg: github.com/brackendawson/kata
cpu: Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz
BenchmarkLoop/Recursive_Memoized-12                13424             91082 ns/op
BenchmarkLoop/Iterative-12                         13917             82837 ns/op
PASS
ok      github.com/brackendawson/kata    4.323s

我预计你的记忆递归实现不会更快,因为:

  1. go 没有良好的尾部调用优化 (tco)。正如您可能从程序集中看到的,仍然存在 call,只有可以优化 call,递归通常才会更快。
  2. 您的记忆递归实现不是尾部调用,递归调用必须是函数中的最后一个语句才能使用 tco。

到这里,我们也就讲完了《解读费布纳契数列:非递归与记忆递归的计时比较》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于的知识点!

版本声明
本文转载于:stackoverflow 如有侵犯,请联系study_golang@163.com删除
推荐系统与协同过滤技术在PHP中的应用推荐系统与协同过滤技术在PHP中的应用
上一篇
推荐系统与协同过滤技术在PHP中的应用
PHP8的JIT功能极大提高了编码效率,让你获益百倍!
下一篇
PHP8的JIT功能极大提高了编码效率,让你获益百倍!
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3207次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3421次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3450次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4558次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3828次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码