golang 定时任务方面time.Sleep和time.Tick的优劣对比分析
亲爱的编程学习爱好者,如果你点开了这篇文章,说明你对《golang 定时任务方面time.Sleep和time.Tick的优劣对比分析》很感兴趣。本篇文章就来给大家详细解析一下,主要介绍一下定时、time.Sleep、time.Tick,希望所有认真读完的童鞋们,都有实质性的提高。
golang 写循环执行的定时任务,常见的有以下三种实现方式
1、time.Sleep方法:
for { time.Sleep(time.Second) fmt.Println("我在定时执行任务") }
2、time.Tick函数:
t1:=time.Tick(3*time.Second) for { select { case <h3>3、其中Tick定时任务</h3> <p>也可以先使用time.Ticker函数获取Ticker结构体,然后进行阻塞监听信息,这种方式可以手动选择停止定时任务,在停止任务时,减少对内存的浪费。</p> <pre class="brush:plain;"> t:=time.NewTicker(time.Second) for { select { case <p>其中第二种和第三种可以归为同一类</p> <h2>这三种定时器的实现原理</h2> <p>一般来说,你在使用执行定时任务的时候,一般旁人会劝你不要使用time.Sleep完成定时任务,但是为什么不能使用Sleep函数完成定时任务呢,它和Tick函数比,有什么劣势呢?这就需要我们去探讨阅读一下源码,分析一下它们之间的优劣性。</p> <p>首先,我们研究一下Tick函数,func Tick(d Duration) </p><p>调用Tick函数会返回一个时间类型的channel,如果对channel稍微有些了解的话,我们首先会想到,既然是返回一个channel,在调用Tick方法的过程中,必然创建了goroutine,该Goroutine负责发送数据,唤醒被阻塞的定时任务。我在阅读源码之后,确实发现函数中go出去了一个协程,处理定时任务。</p> <p>按照当前的理解,使用一个tick,需要go出去一个协程,效率和对内存空间的占用肯定不能比sleep函数强。我们需要继续阅读源码才拿获取到真理。</p> <p>简单的调用过程我就不陈述了,我在这介绍一下核心结构体和方法(删除了部分判断代码,解释我写在表格中):</p> <pre class="brush:plain;"> func (tb *timersBucket) addtimerLocked(t *timer) { t.i = len(tb.t) //计算timersBucket中,当前定时任务的长度 tb.t = append(tb.t, t)// 将当前定时任务加入timersBucket siftupTimer(tb.t, t.i) //维护一个timer结构体的最小堆(四叉树),排序关键字为执行时间,即该定时任务下一次执行的时间 if !tb.created { tb.created = true go timerproc(tb)// 如果还没有创建过管理定时任务的协程,则创建一个,执行通知管理timer的协程,最核心代码 } }
timersBucket,顾名思义,时间任务桶,是外界不可见的全局变量。每当有新的timer定时器任务时,会将timer加入到timersBucket中的timer切片。timerBucket结构体如下:
type timersBucket struct { lock mutex //添加新定时任务时需要加锁(冲突点在于维护堆) t []*timer //timer切片,构造方式为四叉树最小堆 }
func timerproc(tb *timersBucket) 详细介绍
可以称之为定时任务处理器,所有的定时任务都会加入timersBucket,然后在该函数中等待被处理。
等待被处理的timer,根据when字段(任务执行的时间,int类型,纳秒级别)构成一个最小堆,每次处理完成堆顶的某个timer时,会给它的when字段加上定时任务循环间隔时间(即Tick(d Duration) 中的d参数),然后重新维护堆,保证when最小的timer在堆顶。当堆中没有可以处理的timer(有timer,但是还不到执行时间),需要计算当前时间和堆顶中timer的任务执行时间差值delta,定时任务处理器沉睡delta段时间,等待被调度器唤醒。
核心代码如下(注释写在每行代码的后面,删除一些判断代码以及不利于阅读的非核心代码):
func timerproc(tb *timersBucket) { for { lock(&tb.lock) //加锁 now := nanotime() //当前时间的纳秒值 delta := int64(-1) //最近要执行的timer和当前时间的差值 for { if len(tb.t) == 0 { delta = -1 break }//当前无可执行timer,直接跳出该循环 t := tb.t[0] delta = t.when - now //取when组小的的timer,计算于当前时间的差值 if delta > 0 { break }// delta大于0,说明还未到发送channel时间,需要跳出循环去睡眠delta时间 if t.period > 0 { // leave in heap but adjust next time to fire t.when += t.period * (1 + -delta/t.period)// 计算该timer下次执行任务的时间 siftdownTimer(tb.t, 0) //调整堆 } else { // remove from heap,如果没有设定下次执行时间,则将该timer从堆中移除(time.after和time.sleep函数即是只执行一次定时任务) last := len(tb.t) - 1 if last > 0 { tb.t[0] = tb.t[last] tb.t[0].i = 0 } tb.t[last] = nil tb.t = tb.t[:last] if last > 0 { siftdownTimer(tb.t, 0) } t.i = -1 // mark as removed } f := t.f arg := t.arg seq := t.seq unlock(&tb.lock)//解锁 f(arg, seq) //在channel中发送time结构体,唤醒阻塞的协程 lock(&tb.lock) } if delta <p>至此,time.Tick函数涉及到的主要功能就讲解结束了,总结一下就是启动定时任务时,会创建一个唯一协程,处理timer,所有的timer都在该协程中处理。</p> <p>然后,我们再阅读一下sleep的源码实现,核心源码如下:</p> <pre class="brush:plain;"> //go:linkname timeSleep time.Sleep func timeSleep(ns int64) { *t = timer{} //创建一个定时任务 t.when = nanotime() + ns //计算定时任务的执行时间点 t.f = goroutineReady //执行方法 tb.addtimerLocked(t) //加入timer堆,并在timer定时任务执行协程中等待被执行 goparkunlock(&tb.lock, "sleep", traceEvGoSleep, 2) //睡眠,等待定时任务协程通知唤醒 }
读了sleep的核心代码之后,是不是突然发现和Tick函数的内容很类似,都创建了timer,并加入了定时任务处理协程。神奇之处就在于,实际上这两个函数产生的timer都放入了同一个timer堆,都在定时任务处理协程中等待被处理。
优劣性对比,使用建议
现在我们知道了,Tick,Sleep,包括time.After函数,都使用的timer结构体,都会被放在同一个协程中统一处理,这样看起来使用Tick,Sleep并没有什么区别。
实际上是有区别的,Sleep是使用睡眠完成定时任务,需要被调度唤醒。Tick函数是使用channel阻塞当前协程,完成定时任务的执行。当前并不清楚golang 阻塞和睡眠对资源的消耗会有什么区别,这方面不能给出建议。
但是使用channel阻塞协程完成定时任务比较灵活,可以结合select设置超时时间以及默认执行方法,而且可以设置timer的主动关闭,以及不需要每次都生成一个timer(这方面节省系统内存,垃圾收回也需要时间)。
所以,建议使用time.Tick完成定时任务。
补充:Golang 定时器timer和ticker
两种类型的定时器:ticker和timer。两者有什么区别呢?请看如下代码:
ticker
package main import ( "fmt" "time" ) func main() { d := time.Duration(time.Second*2) t := time.NewTicker(d) defer t.Stop() for { <p>output:</p> <blockquote> <p>timeout…</p> <p>timeout…</p> <p>timeout…</p> </blockquote> <p>解析</p> <p>ticker只要定义完成,从此刻开始计时,不需要任何其他的操作,每隔固定时间都会触发。</p> <h2>timer</h2> <pre class="brush:plain;"> package main import ( "fmt" "time" ) func main() { d := time.Duration(time.Second*2) t := time.NewTimer(d) defer t.Stop() for { <p>output:</p> <blockquote> <p>timeout…</p> <p>timeout…</p> <p>timeout…</p> </blockquote> <p>解析</p> <p>使用timer定时器,超时后需要重置,才能继续触发。</p> <h2>ticker 例子展示</h2> <pre class="brush:plain;"> package main import ( "fmt" "time" ) func main() { t := time.NewTicker(3*time.Second) defer t.Stop() fmt.Println(time.Now()) time.Sleep(4*time.Second) for { select { case <p>output:</p> <blockquote> <p>2018-04-02 19:08:22.2797 +0800 CST</p> <p>2018-04-02 19:08:26.3087 +0800 CST</p> <p>2018-04-02 19:08:28.2797 +0800 CST</p> <p>2018-04-02 19:08:31.2797 +0800 CST</p> <p>2018-04-02 19:08:34.2797 +0800 CST</p> </blockquote> <p>以上为个人经验,希望能给大家一个参考,也希望大家多多支持golang学习网。如有错误或未考虑完全的地方,望不吝赐教。</p><p>本篇关于《golang 定时任务方面time.Sleep和time.Tick的优劣对比分析》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于Golang的相关知识,请关注golang学习网公众号!</p>

- 上一篇
- 浅谈golang 中time.After释放的问题

- 下一篇
- golang日志包logger的用法详解
-
- Golang · Go教程 | 18秒前 |
- Golangzip库实现文件压缩解压教程
- 244浏览 收藏
-
- Golang · Go教程 | 3分钟前 |
- Golang外观模式:简化接口的实用技巧
- 339浏览 收藏
-
- Golang · Go教程 | 7分钟前 |
- Golangio/fs文件系统解析与内存实现详解
- 347浏览 收藏
-
- Golang · Go教程 | 14分钟前 |
- Golang组合模式应用与树形操作实现
- 295浏览 收藏
-
- Golang · Go教程 | 15分钟前 |
- Golang反射解析协议,二进制转结构体教程
- 344浏览 收藏
-
- Golang · Go教程 | 21分钟前 |
- Golang模拟网络延迟测试方法
- 357浏览 收藏
-
- Golang · Go教程 | 38分钟前 |
- Golang集成Istio与Envoy配置详解
- 313浏览 收藏
-
- Golang · Go教程 | 40分钟前 | 数据竞争 通道 同步原语 Golang并发内存模型 happens-before原则
- Golang并发内存模型解析:happens-before原则详解
- 318浏览 收藏
-
- Golang · Go教程 | 43分钟前 |
- Golang快速搭建HTTP服务器方法
- 427浏览 收藏
-
- Golang · Go教程 | 48分钟前 |
- GolangCSV文件读写教程详解
- 365浏览 收藏
-
- Golang · Go教程 | 50分钟前 |
- Golang结构体定义及使用教程
- 265浏览 收藏
-
- Golang · Go教程 | 57分钟前 |
- Golang加密方法与实战技巧分享
- 252浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- TextIn智能文字识别平台
- TextIn智能文字识别平台,提供OCR、文档解析及NLP技术,实现文档采集、分类、信息抽取及智能审核全流程自动化。降低90%人工审核成本,提升企业效率。
- 7次使用
-
- 简篇AI排版
- SEO 简篇 AI 排版,一款强大的 AI 图文排版工具,3 秒生成专业文章。智能排版、AI 对话优化,支持工作汇报、家校通知等数百场景。会员畅享海量素材、专属客服,多格式导出,一键分享。
- 7次使用
-
- 小墨鹰AI快排
- SEO 小墨鹰 AI 快排,新媒体运营必备!30 秒自动完成公众号图文排版,更有 AI 写作助手、图片去水印等功能。海量素材模板,一键秒刷,提升运营效率!
- 8次使用
-
- Aifooler
- AI Fooler是一款免费在线AI音频处理工具,无需注册安装,即可快速实现人声分离、伴奏提取。适用于音乐编辑、视频制作、练唱素材等场景,提升音频创作效率。
- 7次使用
-
- 易我人声分离
- 告别传统音频处理的繁琐!易我人声分离,基于深度学习的AI工具,轻松分离人声和背景音乐,支持在线使用,无需安装,简单三步,高效便捷。
- 8次使用
-
- golang常用定时任务汇总
- 2023-01-07 327浏览
-
- 一文带你入门Go语言中定时任务库Cron的使用
- 2023-01-07 250浏览
-
- 一文详解Golang 定时任务库 gron 设计和原理
- 2022-12-29 441浏览
-
- Golang分布式应用定时任务示例详解
- 2022-12-24 269浏览
-
- 详解golang定时任务time.Sleep和time.Tick实现结果比较
- 2023-01-17 126浏览