我的神经网络(从头开始)训练,让它离目标更远
来源:stackoverflow
2024-03-17 20:24:30
0浏览
收藏
在机器学习中,训练神经网络的目标是让模型学习特定任务或做出预测。本文介绍了从头开始使用 Go 语言创建神经网络的经验,重点在于训练一个简单的网络来相加两个数字。作者详细介绍了神经网络的架构和训练过程,并分享了调试和改进模型的见解。通过深入了解神经网络的工作原理和微调过程,作者旨在为其他初学者提供有价值的指导。
问题内容
这是我第一次创建神经网络,我决定在 golang 中创建它,这通常不是用于此目的的语言,但是我想从头开始很好地理解它们如何工作仅基本库。
该程序的目标是训练一个神经网络,使其能够将两个数字(1-10)相加。为此,我创建了一个名为 rawai(我能想到的最好的名字)的神经网络类,并给它一个 1 个输入层(大小为 2 的数组)、1 个隐藏层(大小为 2 的数组)和 1 个输出层(大小为 1) 的数组。
权重有2个2d数组,一个是ih(hidden的输入)[2,2],一个是ho,[2,1]。
下面是启动 ai、训练和测试 ai 的代码。您将看到我使用过的几个调试语句,并且非 golang 或其包的任何其他函数将显示在我的 rawai 类的以下代码中。这是由我的 main 函数调用的:
func additionneuralnetworktest() {
nn := newrawai(2, 2, 1, 1/math.pow(10, 15))
fmt.printf("weights ih before: %v\n\nweights ho after: %v\n", nn.weightsih, nn.weightsho)
//train neural network
//
for epoch := 0; epoch < 10000000; epoch++ {
for i := 0; i <= 10; i++ {
for j := 0; j <= 10; j++ {
inputs := make([]float64, 2)
targets := make([]float64, 1)
inputs[0] = float64(i)
inputs[1] = float64(j)
targets[0] = float64(i) + float64(j)
nn.train(inputs, targets)
if epoch%20000 == 0 && i == 5 && j == 5 {
fmt.printf("[training] [epoch %d] %f + %f = %f targets[%f]\n", epoch, inputs[0], inputs[1], nn.outputlayer[0], targets[0])
}
}
}
}
// test neural network
a := rand.intn(10) + 1
b := rand.intn(10) + 1
inputs := make([]float64, 2)
inputs[0] = float64(a)
inputs[1] = float64(b)
prediction := nn.feedforward(inputs)[0]
fmt.printf("%d + %d = %f\n", a, b, prediction)
fmt.printf("weights ih: %v\n\nweights ho: %v\n", nn.weightsih, nn.weightsho)
}
以下是 rawai 文件中的所有代码:
type RawAI struct {
InputLayer []float64 `json:"input_layer"`
HiddenLayer []float64 `json:"hidden_layer"`
OutputLayer []float64 `json:"output_layer"`
WeightsIH [][]float64 `json:"weights_ih"`
WeightsHO [][]float64 `json:"weights_ho"`
LearningRate float64 `json:"learning_rate"`
}
func NewRawAI(inputSize, hiddenSize, outputSize int, learningRate float64) *RawAI {
nn := RawAI{
InputLayer: make([]float64, inputSize),
HiddenLayer: make([]float64, hiddenSize),
OutputLayer: make([]float64, outputSize),
WeightsIH: randomMatrix(inputSize, hiddenSize),
WeightsHO: randomMatrix(hiddenSize, outputSize),
LearningRate: learningRate,
}
return &nn
}
func (nn *RawAI) FeedForward(inputs []float64) []float64 {
// Set input layer
for i := 0; i < len(inputs); i++ {
nn.InputLayer[i] = inputs[i]
}
// Compute hidden layer
for i := 0; i < len(nn.HiddenLayer); i++ {
sum := 0.0
for j := 0; j < len(nn.InputLayer); j++ {
sum += nn.InputLayer[j] * nn.WeightsIH[j][i]
}
nn.HiddenLayer[i] = sum
if math.IsNaN(sum) {
panic(fmt.Sprintf("Sum is NaN on Hidden Layer:\nInput Layer: %v\nHidden Layer: %v\nWeights IH: %v\n", nn.InputLayer, nn.HiddenLayer, nn.WeightsIH))
}
}
// Compute output layer
for k := 0; k < len(nn.OutputLayer); k++ {
sum := 0.0
for j := 0; j < len(nn.HiddenLayer); j++ {
sum += nn.HiddenLayer[j] * nn.WeightsHO[j][k]
}
nn.OutputLayer[k] = sum
if math.IsNaN(sum) {
panic(fmt.Sprintf("Sum is NaN on Output Layer:\n Model: %v\n", nn))
}
}
return nn.OutputLayer
}
func (nn *RawAI) Train(inputs []float64, targets []float64) {
nn.FeedForward(inputs)
// Compute output layer error
outputErrors := make([]float64, len(targets))
for k := 0; k < len(targets); k++ {
outputErrors[k] = targets[k] - nn.OutputLayer[k]
}
// Compute hidden layer error
hiddenErrors := make([]float64, len(nn.HiddenLayer))
for j := 0; j < len(nn.HiddenLayer); j++ {
errorSum := 0.0
for k := 0; k < len(nn.OutputLayer); k++ {
errorSum += outputErrors[k] * nn.WeightsHO[j][k]
}
hiddenErrors[j] = errorSum * sigmoidDerivative(nn.HiddenLayer[j])
if math.IsInf(math.Abs(hiddenErrors[j]), 1) {
//Find out why
fmt.Printf("Hidden Error is Infinite:\nTargets:%v\nOutputLayer:%v\n\n", targets, nn.OutputLayer)
}
}
// Update weights
for j := 0; j < len(nn.HiddenLayer); j++ {
for k := 0; k < len(nn.OutputLayer); k++ {
delta := nn.LearningRate * outputErrors[k] * nn.HiddenLayer[j]
nn.WeightsHO[j][k] += delta
}
}
for i := 0; i < len(nn.InputLayer); i++ {
for j := 0; j < len(nn.HiddenLayer); j++ {
delta := nn.LearningRate * hiddenErrors[j] * nn.InputLayer[i]
nn.WeightsIH[i][j] += delta
if math.IsNaN(delta) {
fmt.Print(fmt.Sprintf("Delta is NaN.\n Learning Rate: %f\nHidden Errors: %f\nInput: %f\n", nn.LearningRate, hiddenErrors[j], nn.InputLayer[i]))
}
if math.IsNaN(nn.WeightsIH[i][j]) {
fmt.Print(fmt.Sprintf("Delta is NaN.\n Learning Rate: %f\nHidden Errors: %f\nInput: %f\n", nn.LearningRate, hiddenErrors[j], nn.InputLayer[i]))
}
}
}
}
func (nn *RawAI) ExportWeights(filename string) error {
weightsJson, err := json.Marshal(nn)
if err != nil {
return err
}
err = ioutil.WriteFile(filename, weightsJson, 0644)
if err != nil {
return err
}
return nil
}
func (nn *RawAI) ImportWeights(filename string) error {
weightsJson, err := ioutil.ReadFile(filename)
if err != nil {
return err
}
err = json.Unmarshal(weightsJson, nn)
if err != nil {
return err
}
return nil
}
//RawAI Tools:
func randomMatrix(rows, cols int) [][]float64 {
matrix := make([][]float64, rows)
for i := 0; i < rows; i++ {
matrix[i] = make([]float64, cols)
for j := 0; j < cols; j++ {
matrix[i][j] = 1.0
}
}
return matrix
}
func sigmoid(x float64) float64 {
return 1.0 / (1.0 + exp(-x))
}
func sigmoidDerivative(x float64) float64 {
return x * (1.0 - x)
}
func exp(x float64) float64 {
return 1.0 + x + (x*x)/2.0 + (x*x*x)/6.0 + (x*x*x*x)/24.0
}
输出的例子是这样的: 正如您所看到的,它慢慢地远离目标并继续这样做。 经过询问、谷歌搜索和搜索这个网站后,我找不到我的错误所在,所以我决定问这个问题。
正确答案
我认为您使用的是 均方误差 并在微分后忘记了 - 。
所以改变:
outputerrors[k] = (targets[k] - nn.outputlayer[k])
致:
outputErrors[k] = -(targets[k] - nn.OutputLayer[k])
文中关于的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《我的神经网络(从头开始)训练,让它离目标更远》文章吧,也可关注golang学习网公众号了解相关技术文章。
版本声明
本文转载于:stackoverflow 如有侵犯,请联系study_golang@163.com删除
1024 分辨率下最快模型,字节跳动文生图开放模型 SDXL-Lightning 发布
- 上一篇
- 1024 分辨率下最快模型,字节跳动文生图开放模型 SDXL-Lightning 发布
- 下一篇
- 预计的 Golang 布尔标志与关闭通道时收到的值不一致
查看更多
最新文章
-
- Golang · Go问答 | 1年前 |
- 在读取缓冲通道中的内容之前退出
- 139浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 戈兰岛的全球 GOPRIVATE 设置
- 204浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 如何将结构作为参数传递给 xml-rpc
- 325浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 如何用golang获得小数点以下两位长度?
- 478浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 如何通过 client-go 和 golang 检索 Kubernetes 指标
- 486浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 将多个“参数”映射到单个可变参数的习惯用法
- 439浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 将 HTTP 响应正文写入文件后出现 EOF 错误
- 357浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 结构中映射的匿名列表的“复合文字中缺少类型”
- 352浏览 收藏
-
- Golang · Go问答 | 1年前 |
- NATS Jetstream 的性能
- 101浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 如何将复杂的字符串输入转换为mapstring?
- 440浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 相当于GoLang中Java将Object作为方法参数传递
- 212浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 如何确保所有 goroutine 在没有 time.Sleep 的情况下终止?
- 143浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
查看更多
AI推荐
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3212次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3425次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3455次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4564次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3832次使用
查看更多
相关文章
-
- GoLand调式动态执行代码
- 2023-01-13 502浏览
-
- 用Nginx反向代理部署go写的网站。
- 2023-01-17 502浏览
-
- Golang取得代码运行时间的问题
- 2023-02-24 501浏览
-
- 请问 go 代码如何实现在代码改动后不需要Ctrl+c,然后重新 go run *.go 文件?
- 2023-01-08 501浏览
-
- 如何从同一个 io.Reader 读取多次
- 2023-04-11 501浏览

