当前位置:首页 > 文章列表 > Golang > Go教程 > Go 处理大数组使用 for range 和 for 循环的区别

Go 处理大数组使用 for range 和 for 循环的区别

来源:脚本之家 2023-01-09 11:18:41 0浏览 收藏

在Golang实战开发的过程中,我们经常会遇到一些这样那样的问题,然后要卡好半天,等问题解决了才发现原来一些细节知识点还是没有掌握好。今天golang学习网就整理分享《Go 处理大数组使用 for range 和 for 循环的区别》,聊聊处理、循环、for、range,希望可以帮助到正在努力赚钱的你。

前言:

对于遍历大数组而言, for 循环能比 for range 循环更高效与稳定,这一点在数组元素为结构体类型更加明显。

我们知道,Go 的语法比较简洁。它并不提供类似 C 支持的 while、do...while 等循环控制语法,而仅保留了一种语句,即 for 循环。

for i := 0; i 
<p>但是,经典的三段式循环语句,需要获取迭代对象的长度 n。鉴于此,为了更方便 Go 开发者对复合数据类型进行迭代,例如 array、slice、channel、map,Go 提供了 for 循环的变体,即 for range 循环。</p>
<h2>副本复制问题</h2>
<p>range 在带来便利的同时,也给 Go 初学者带来了一些麻烦。因为使用者需要明白一点:for range 中,参与循环表达式的只是对象的副本。</p>
<pre class="brush:go;">func main() {
    var a = [5]int{1, 2, 3, 4, 5}
    var r [5]int
    fmt.Println("original a =", a)
    for i, v := range a {
        if i == 0 {
            a[1] = 12
            a[2] = 13
        }
        r[i] = v
    }
    fmt.Println("after for range loop, r =", r)
    fmt.Println("after for range loop, a =", a)
}

你认为这段代码会输出以下结果吗?

original a = [1 2 3 4 5]
after for range loop, r = [1 12 13 4 5]
after for range loop, a = [1 12 13 4 5]

但是,实际输出是;

original a = [1 2 3 4 5]
after for range loop, r = [1 2 3 4 5]
after for range loop, a = [1 12 13 4 5]

为什么会这样?原因是参与 for range 循环是 range 表达式的副本。也就是说,在上面的例子中,实际上参与循环的是 a 的副本,而不是真正的 a。

为了让大家更容易理解,我们把上面例子中的 for range 循环改写成等效的伪代码形式。

for i, v := range ac { //ac is a value copy of a
    if i == 0 {
        a[1] = 12
        a[2] = 13
    }
    r[i] = v
}

ac 是 Go 临时分配的连续字节序列,与 a 根本不是同一块内存空间。因此,无论 a 如何修改,它参与循环的副本 ac 仍然保持原始值,因此从 ac 中取出的 v 也依然是 a 的原始值,而不是修改后的值。

那么,问题来了,既然 for range 使用的是副本数据,那 for range 会比经典的 for 循环消耗更多的资源并且性能更差吗?

性能对比

基于副本复制问题,我们先使用基准示例来验证一下:对于大型数组,for range 是否一定比经典的 for 循环运行得慢?

package main
import "testing"
func BenchmarkClassicForLoopIntArray(b *testing.B) {
 b.ReportAllocs()
 var arr [100000]int
 for i := 0; i 
<p>在这个例子中,我们使用 for 循环和 for range 分别遍历一个包含 10 万个 int 类型元素的数组。让我们看看基准测试的结果。</p>
<blockquote><p>$ go test -bench . forRange1_test.go <br>goos: darwin<br>goarch: amd64<br>cpu: Intel(R) Core(TM) i5-8279U CPU @ 2.40GHz<br>BenchmarkClassicForLoopIntArray-8          47404             25486 ns/op               0 B/op          0 allocs/op<br>BenchmarkForRangeIntArray-8                37142             31691 ns/op               0 B/op          0 allocs/op<br>PASS<br>ok      command-line-arguments  2.978s</p></blockquote>
<p>从输出结果可以看出,for range 的确会稍劣于 for 循环,当然这其中包含了编译器级别优化的结果(通常是静态单赋值,或者 SSA 链接)。</p>
<p>让我们关闭优化开关,再次运行压力测试。</p>
<blockquote><p> $ go test -c -gcflags '-N -l' . -o forRange1.test<br> $ ./forRange1.test -test.bench .<br> goos: darwin<br>goarch: amd64<br>pkg: workspace/example/forRange<br>cpu: Intel(R) Core(TM) i5-8279U CPU @ 2.40GHz<br>BenchmarkClassicForLoopIntArray-8           6734            175319 ns/op               0 B/op          0 allocs/op<br>BenchmarkForRangeIntArray-8                 5178            242977 ns/op               0 B/op          0 allocs/op<br>PASS</p></blockquote>
<p>当没有编译器优化时,两种循环的性能都明显下降, for range 下降得更为明显,性能也更加比经典 for 循环差。</p>
<h2>遍历结构体数组</h2>
<p>上述性能测试中,我们的遍历对象类型是 int 值的数组,如果我们将 int 元素改为结构体会怎么样?for 和 for range 循环各自表现又会如何?</p>
<pre class="brush:go;">package main
import "testing"
type U5 struct {
 a, b, c, d, e int
}
type U4 struct {
 a, b, c, d int
}
type U3 struct {
 b, c, d int
}
type U2 struct {
 c, d int
}
type U1 struct {
 d int
}

func BenchmarkClassicForLoopLargeStructArrayU5(b *testing.B) {
 b.ReportAllocs()
 var arr [100000]U5
 for i := 0; i 
<p>在这个例子中,我们定义了 5 种类型的结构体:U1~U5,它们的区别在于包含的 int 类型字段的数量。</p>
<p><strong>性能测试结果如下:</strong></p>
<blockquote><p> $ go test -bench . forRange2_test.go<br>goos: darwin<br>goarch: amd64<br>cpu: Intel(R) Core(TM) i5-8279U CPU @ 2.40GHz<br>BenchmarkClassicForLoopLargeStructArrayU5-8        44540             26227 ns/op               0 B/op          0 allocs/op<br>BenchmarkClassicForLoopLargeStructArrayU4-8        45906             26312 ns/op               0 B/op          0 allocs/op<br>BenchmarkClassicForLoopLargeStructArrayU3-8        43315             27400 ns/op               0 B/op          0 allocs/op<br>BenchmarkClassicForLoopLargeStructArrayU2-8        44605             26313 ns/op               0 B/op          0 allocs/op<br>BenchmarkClassicForLoopLargeStructArrayU1-8        45752             26110 ns/op               0 B/op          0 allocs/op<br>BenchmarkForRangeLargeStructArrayU5-8               3072            388651 ns/op               0 B/op          0 allocs/op<br>BenchmarkForRangeLargeStructArrayU4-8               4605            261329 ns/op               0 B/op          0 allocs/op<br>BenchmarkForRangeLargeStructArrayU3-8               5857            182565 ns/op               0 B/op          0 allocs/op<br>BenchmarkForRangeLargeStructArrayU2-8              10000            108391 ns/op               0 B/op          0 allocs/op<br>BenchmarkForRangeLargeStructArrayU1-8              36333             32346 ns/op               0 B/op          0 allocs/op<br>PASS<br>ok      command-line-arguments  16.160s</p></blockquote>
<p><strong>我们看到一个现象:</strong>不管是什么类型的结构体元素数组,经典的 for 循环遍历的性能比较一致,但是 for range 的遍历性能会随着结构字段数量的增加而降低。</p>
<h2>结论</h2>
<p>对于遍历大数组而言, for 循环能比 for range 循环更高效与稳定,这一点在数组元素为结构体类型更加明显。</p>
<p>另外,由于在 Go 中切片的底层都是通过数组来存储数据,尽管有 for range 的副本复制问题,但是切片副本指向的底层数组与原切片是一致的。这意味着,当我们将数组通过切片代替后,不管是通过 for range 或者 for 循环均能得到一致的稳定的遍历性能。</p>
<p>今天带大家了解了处理、循环、for、range的相关知识,希望对你有所帮助;关于Golang的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~</p>
版本声明
本文转载于:脚本之家 如有侵犯,请联系study_golang@163.com删除
详解如何在Go语言中调用C源代码详解如何在Go语言中调用C源代码
上一篇
详解如何在Go语言中调用C源代码
Go 函数中获取调用者的函数名和文件名及行号
下一篇
Go 函数中获取调用者的函数名和文件名及行号
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 茅茅虫AIGC检测:精准识别AI生成内容,保障学术诚信
    茅茅虫AIGC检测
    茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
    18次使用
  • 赛林匹克平台:科技赛事聚合,赋能AI、算力、量子计算创新
    赛林匹克平台(Challympics)
    探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
    50次使用
  • SEO  笔格AIPPT:AI智能PPT制作,免费生成,高效演示
    笔格AIPPT
    SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
    57次使用
  • 稿定PPT:在线AI演示设计,高效PPT制作工具
    稿定PPT
    告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
    53次使用
  • Suno苏诺中文版:AI音乐创作平台,人人都是音乐家
    Suno苏诺中文版
    探索Suno苏诺中文版,一款颠覆传统音乐创作的AI平台。无需专业技能,轻松创作个性化音乐。智能词曲生成、风格迁移、海量音效,释放您的音乐灵感!
    57次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码