紧急情况:矩阵的维度为零
来源:stackoverflow
2024-02-28 21:18:17
0浏览
收藏
亲爱的编程学习爱好者,如果你点开了这篇文章,说明你对《紧急情况:矩阵的维度为零》很感兴趣。本篇文章就来给大家详细解析一下,主要介绍一下,希望所有认真读完的童鞋们,都有实质性的提高。
问题内容
我运行代码来训练神经网络,并收到警告,矩阵长度为零,我不知道会发生什么,因为我在神经网络的输出变量中使用该零矩阵。
package main
import (
"errors"
"fmt"
"log"
"math"
"math/rand"
"time"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/mat"
)
// sumAlongAxis sums a matrix along a
// particular dimension, preserving the
// other dimension.
func sumAlongAxis(axis int, m *mat.Dense) (*mat.Dense, error) {
numRows, numCols := m.Dims()
var output *mat.Dense
switch axis {
case 0:
data := make([]float64, numCols)
for i := 0; i < numCols; i++ {
col := mat.Col(nil, i, m)
data[i] = floats.Sum(col)
}
output = mat.NewDense(1, numCols, data)
case 1:
data := make([]float64, numRows)
for i := 0; i < numRows; i++ {
row := mat.Row(nil, i, m)
data[i] = floats.Sum(row)
}
output = mat.NewDense(numRows, 1, data)
default:
return nil, errors.New("invalid axis, must be 0 or 1")
}
return output, nil
}
// sigmoid implements the sigmoid function
// for use in activation functions.
func sigmoid(x float64) float64 {
return 1.0 / (1.0 + math.Exp(-x))
}
// sigmoidPrime implements the derivative
// of the sigmoid function for backpropagation.
func sigmoidPrime(x float64) float64 {
return x * (1.0 - x)
}
// neuralNet contains all of the information
// that defines a trained neural network.
type neuralNet struct {
config neuralNetConfig
wHidden *mat.Dense
bHidden *mat.Dense
wOut *mat.Dense
bOut *mat.Dense
}
// neuralNetConfig defines our neural network
// architecture and learning parameters.
type neuralNetConfig struct {
inputNeurons int
outputNeurons int
hiddenNeurons int
numEpochs int
learningRate float64
}
// NewNetwork initializes a new neural network.
func newNetwork(config neuralNetConfig) *neuralNet {
return &neuralNet{config: config}
}
// Train trains a neural network using backpropagation.
func (nn *neuralNet) train(x, y *mat.Dense) error {
// Initialize biases/weights.
randSource := rand.NewSource(time.Now().UnixNano())
randGen := rand.New(randSource)
wHiddenRaw := make([]float64, nn.config.hiddenNeurons*nn.config.inputNeurons)
bHiddenRaw := make([]float64, nn.config.hiddenNeurons)
wOutRaw := make([]float64, nn.config.outputNeurons*nn.config.hiddenNeurons)
bOutRaw := make([]float64, nn.config.outputNeurons)
for _, param := range [][]float64{wHiddenRaw, bHiddenRaw, wOutRaw, bOutRaw} {
for i := range param {
param[i] = randGen.Float64()
}
}
wHidden := mat.NewDense(nn.config.inputNeurons, nn.config.hiddenNeurons, wHiddenRaw)
bHidden := mat.NewDense(1, nn.config.hiddenNeurons, bHiddenRaw)
wOut := mat.NewDense(nn.config.hiddenNeurons, nn.config.outputNeurons, wOutRaw)
bOut := mat.NewDense(1, nn.config.outputNeurons, bOutRaw)
// Define the output of the neural network.
output := mat.NewDense(0, 0, nil)
// Loop over the number of epochs utilizing
// backpropagation to train our model.
for i := 0; i < nn.config.numEpochs; i++ {
// Complete the feed forward process.
hiddenLayerInput := mat.NewDense(0, 0, nil)
hiddenLayerInput.Mul(x, wHidden)
addBHidden := func(_, col int, v float64) float64 { return v + bHidden.At(0, col) }
hiddenLayerInput.Apply(addBHidden, hiddenLayerInput)
hiddenLayerActivations := mat.NewDense(0, 0, nil)
applySigmoid := func(_, _ int, v float64) float64 { return sigmoid(v) }
hiddenLayerActivations.Apply(applySigmoid, hiddenLayerInput)
outputLayerInput := mat.NewDense(0, 0, nil)
outputLayerInput.Mul(hiddenLayerActivations, wOut)
addBOut := func(_, col int, v float64) float64 { return v + bOut.At(0, col) }
outputLayerInput.Apply(addBOut, outputLayerInput)
output.Apply(applySigmoid, outputLayerInput)
// Complete the backpropagation.
networkError := mat.NewDense(0, 0, nil)
networkError.Sub(y, output)
slopeOutputLayer := mat.NewDense(0, 0, nil)
applySigmoidPrime := func(_, _ int, v float64) float64 { return sigmoidPrime(v) }
slopeOutputLayer.Apply(applySigmoidPrime, output)
slopeHiddenLayer := mat.NewDense(0, 0, nil)
slopeHiddenLayer.Apply(applySigmoidPrime, hiddenLayerActivations)
dOutput := mat.NewDense(0, 0, nil)
dOutput.MulElem(networkError, slopeOutputLayer)
errorAtHiddenLayer := mat.NewDense(0, 0, nil)
errorAtHiddenLayer.Mul(dOutput, wOut.T())
dHiddenLayer := mat.NewDense(0, 0, nil)
dHiddenLayer.MulElem(errorAtHiddenLayer, slopeHiddenLayer)
// Adjust the parameters.
wOutAdj := mat.NewDense(0, 0, nil)
wOutAdj.Mul(hiddenLayerActivations.T(), dOutput)
wOutAdj.Scale(nn.config.learningRate, wOutAdj)
wOut.Add(wOut, wOutAdj)
bOutAdj, err := sumAlongAxis(0, dOutput)
if err != nil {
return err
}
bOutAdj.Scale(nn.config.learningRate, bOutAdj)
bOut.Add(bOut, bOutAdj)
wHiddenAdj := mat.NewDense(0, 0, nil)
wHiddenAdj.Mul(x.T(), dHiddenLayer)
wHiddenAdj.Scale(nn.config.learningRate, wHiddenAdj)
wHidden.Add(wHidden, wHiddenAdj)
bHiddenAdj, err := sumAlongAxis(0, dHiddenLayer)
if err != nil {
return err
}
bHiddenAdj.Scale(nn.config.learningRate, bHiddenAdj)
bHidden.Add(bHidden, bHiddenAdj)
}
nn.wHidden = wHidden
nn.bHidden = bHidden
nn.wOut = wOut
nn.bOut = bOut
return nil
}
func main() {
// Define our input attributes.
input := mat.NewDense(3, 4, []float64{
1.0, 0.0, 1.0, 0.0,
1.0, 0.0, 1.0, 1.0,
0.0, 1.0, 0.0, 1.0,
})
// Define our labels.
labels := mat.NewDense(3, 1, []float64{1.0, 1.0, 0.0})
// Define our network architecture and
// learning parameters.
config := neuralNetConfig{
inputNeurons: 4,
outputNeurons: 1,
hiddenNeurons: 3,
numEpochs: 5000,
learningRate: 0.3,
}
// Train the neural network.
network := newNetwork(config)
if err := network.train(input, labels); err != nil {
log.Fatal(err)
}
// Output the weights that define our network!
f := mat.Formatted(network.wHidden, mat.Prefix(" "))
fmt.Printf("\nwHidden = % v\n\n", f)
f = mat.Formatted(network.bHidden, mat.Prefix(" "))
fmt.Printf("\nbHidden = % v\n\n", f)
f = mat.Formatted(network.wOut, mat.Prefix(" "))
fmt.Printf("\nwOut = % v\n\n", f)
f = mat.Formatted(network.bOut, mat.Prefix(" "))
fmt.Printf("\nbOut = % v\n\n", f)
}正确答案
来自 mat 软件包的 documentation:
因此,当您使用 r 和 c 零调用 mat.NewDense(0, 0, nil) 时,正如您在上面的源代码中多次执行的那样,代码会出现恐慌,正如其文档所述。没有什么意外。
终于介绍完啦!小伙伴们,这篇关于《紧急情况:矩阵的维度为零》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布Golang相关知识,快来关注吧!
版本声明
本文转载于:stackoverflow 如有侵犯,请联系study_golang@163.com删除
设置 *tls.Conn 的 Keep-Alive 周期
- 上一篇
- 设置 *tls.Conn 的 Keep-Alive 周期
- 下一篇
- 失败:在 Windows 10 上使用 Robotgo 进行桌面自动化构建出现问题
查看更多
最新文章
-
- Golang · Go问答 | 1年前 |
- 在读取缓冲通道中的内容之前退出
- 139浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 戈兰岛的全球 GOPRIVATE 设置
- 204浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 如何将结构作为参数传递给 xml-rpc
- 325浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 如何用golang获得小数点以下两位长度?
- 478浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 如何通过 client-go 和 golang 检索 Kubernetes 指标
- 486浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 将多个“参数”映射到单个可变参数的习惯用法
- 439浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 将 HTTP 响应正文写入文件后出现 EOF 错误
- 357浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 结构中映射的匿名列表的“复合文字中缺少类型”
- 352浏览 收藏
-
- Golang · Go问答 | 1年前 |
- NATS Jetstream 的性能
- 101浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 如何将复杂的字符串输入转换为mapstring?
- 440浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 相当于GoLang中Java将Object作为方法参数传递
- 212浏览 收藏
-
- Golang · Go问答 | 1年前 |
- 如何确保所有 goroutine 在没有 time.Sleep 的情况下终止?
- 143浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
查看更多
AI推荐
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3166次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3379次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3408次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4512次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3788次使用
查看更多
相关文章
-
- GoLand调式动态执行代码
- 2023-01-13 502浏览
-
- 用Nginx反向代理部署go写的网站。
- 2023-01-17 502浏览
-
- Golang取得代码运行时间的问题
- 2023-02-24 501浏览
-
- 请问 go 代码如何实现在代码改动后不需要Ctrl+c,然后重新 go run *.go 文件?
- 2023-01-08 501浏览
-
- 如何从同一个 io.Reader 读取多次
- 2023-04-11 501浏览

