当前位置:首页 > 文章列表 > Golang > Go教程 > golang进程内存控制避免docker内oom

golang进程内存控制避免docker内oom

来源:脚本之家 2022-12-22 21:41:16 0浏览 收藏

亲爱的编程学习爱好者,如果你点开了这篇文章,说明你对《golang进程内存控制避免docker内oom》很感兴趣。本篇文章就来给大家详细解析一下,主要介绍一下进程、docker、oom,希望所有认真读完的童鞋们,都有实质性的提高。

背景

golang版本:1.16

之前遇到的问题,docker启动时禁用了oom-kill(kill后服务受损太大),导致golang内存使用接近docker上限后,进程会hang住,不响应任何请求,debug工具也无法attatch。

前文分析见:golang进程在docker中OOM后hang住问题

本文主要尝试给出解决方案

测试程序

测试程序代码如下,协程h.allocate每秒检查内存是否达到800MB,未达到则申请内存,协程h.clear每秒检查内存是否超过800MB的80%,超过则释放掉超出部分,模拟通常的业务程序频繁进行内存申请和释放的逻辑。程序通过http请求127.0.0.1:6060触发开始执行方便debug。

docker启动时加--memory 1G --memory-reservation 1G --oom-kill-disable=true参数限制总内存1G并关闭oom-kill

package main
import (
   "fmt"
   "math/rand"
   "net/http"
   _ "net/http/pprof"
   "sync"
   "sync/atomic"
   "time"
)
const (
   maxBytes = 800 * 1024 * 1024 // 800MB
   arraySize = 4 * 1024
)
type handler struct {
   start        uint32          // 开始进行内存申请释放
   total        int32           // 4kB内存总个数
   count        int             // 4KB内存最大个数
   ratio        float64         // 内存数达到count*ratio后释放多的部分
   bytesBuffers [][]byte        // 内存池
   locks        []*sync.RWMutex // 每个4kb内存一个锁减少竞争
   wg           *sync.WaitGroup
}
func newHandler(count int, ratio float64) *handler {
   h := &handler{
      count:        count,
      bytesBuffers: make([][]byte, count),
      locks:        make([]*sync.RWMutex, count),
      wg:           &sync.WaitGroup{},
      ratio:        ratio,
   }
   for i := range h.locks {
      h.locks[i] = &sync.RWMutex{}
   }
   return h
}
func (h *handler) ServeHTTP(writer http.ResponseWriter, request *http.Request) {
   atomic.StoreUint32(&h.start, 1) // 触发开始内存申请释放
}
func (h *handler) started() bool {
   return atomic.LoadUint32(&h.start) == 1
}
// 每s检查内存未达到count个则补足
func (h *handler) allocate() {
   h.wg.Add(1)
   go func() {
      defer h.wg.Done()
      ticker := time.NewTicker(time.Second)
      for range ticker.C {
         for i := range h.bytesBuffers {
            h.locks[i].Lock()
            if h.bytesBuffers[i] == nil {
               h.bytesBuffers[i] = make([]byte, arraySize)
               h.bytesBuffers[i][0] = 'a'
               atomic.AddInt32(&h.total, 1)
            }
            h.locks[i].Unlock()
            fmt.Printf("allocated size: %dKB\n", atomic.LoadInt32(&h.total)*arraySize/1024)
         }
      }
   }()
}
// 每s检查内存超过count*ratio将超出的部分释放掉
func (h *handler) clear() {
   h.wg.Add(1)
   go func() {
      defer h.wg.Done()
      ticker := time.NewTicker(time.Second)
      for range ticker.C {
         diff := int(atomic.LoadInt32(&h.total)) - int(float64(h.count)*h.ratio)
         tmp := diff
         for diff > 0 {
            i := rand.Intn(h.count)
            h.locks[i].RLock()
            if h.bytesBuffers[i] == nil {
               h.locks[i].RUnlock()
               continue
            }
            h.locks[i].RUnlock()
            h.locks[i].Lock()
            if h.bytesBuffers[i] == nil {
               h.locks[i].Unlock()
               continue
            }
            h.bytesBuffers[i] = nil
            h.locks[i].Unlock()
            atomic.AddInt32(&h.total, -1)
            diff--
         }
         fmt.Printf("free size: %dKB, left size: %dKB\n", tmp*arraySize/1024,
            atomic.LoadInt32(&h.total)*arraySize/1024)
      }
   }()
}
// 每s打印日志检查是否阻塞
func (h *handler) print() {
   h.wg.Add(1)
   go func() {
      defer h.wg.Done()
      ticker := time.NewTicker(time.Second)
      for range ticker.C {
         go func() {
            d := make([]byte, 1024) // trigger gc
            d[0] = 1
            fmt.Printf("running...%d\n", d[0])
         }()
      }
   }()
}
// 等待启动
func (h *handler) wait() {
   h.wg.Add(1)
   go func() {
      defer h.wg.Done()
      addr := "127.0.0.1:6060" // trigger to start
      err := http.ListenAndServe(addr, h)
      if err != nil {
         fmt.Printf("failed to listen on %s, %+v", addr, err)
      }
   }()
   for !h.started() {
      time.Sleep(time.Second)
      fmt.Printf("waiting...\n")
   }
}
// 等待退出
func (h *handler) waitDone() {
   h.wg.Wait()
}
func main() {
   go func() {
      addr := "127.0.0.1:6061" // debug
      _ = http.ListenAndServe(addr, nil)
   }()
   h := newHandler(maxBytes/arraySize, 0.8)
   h.wait()
   h.allocate()
   h.clear()
   h.print()
   h.waitDone()
}

程序执行一段时间后rss占用即达到1G,程序不再响应请求,docker无法通过bash连接上,已经连接的bash执行命令显示错误bash: fork: Cannot allocate memory

一、为gc预留空间方案

之前的分析中,hang住的地方是调用mmap,golang内的堆栈是gc stw后的mark阶段,所以最开始的解决方法是想在stw之前预留100MB空间,stw后释放该部分空间给操作系统,改动如下:

但是进程同样会hang住,debug单步调试发现存在三种情况

  • 未触发gc(是因为gc的步长参数默认为100%,下一次gc触发的时机默认是内存达到上次gc的两倍);
  • gc的stw之前就阻塞住,多数在gcBgMarkStartWorkers函数启动新的goroutine时陷入阻塞;
  • gc的stw后mark prepare阶段阻塞,即前文分析中的,申请新的workbuf时在mmap时阻塞;

可见,预留内存的方式只能对第3种情况有改善,增加了预留内存后多数为第2种情况阻塞。

从解决问题的角度看,预留内存,是让gc去适配内存达到上限后系统调用阻塞的情况,对于其他情况gc反而更差了,因为有额外的内存和cpu开销。更何况因为第2种情况的存在,导致gc的修改无法面面俱到。

而且即使第2种情况创建g不阻塞,创建g后仍然需要找到合适的m执行,但因为已有的m都会因为系统调用被阻塞,而创建新的m即新的线程,又会被阻塞在内存申请上。所以这是不光golang会遇到的问题,即使用其他语言写也会有这种问题。在这种环境下运行的进程,必须对自身的内存大小做严格控制。

二、调整gc参数

通过第一种方案的尝试,我们需要转换角度,结合实际使用场景做适配, 避免影响golang运行机制。限制条件主要有:

  • 进程会使用较多内存
  • 进程的使用有上限, 达到上限后系统调用会阻塞

需要让进程控制内存上限,同时在达到上限前多触发gc。解决方式如下:

  • 用内存池。测试程序中的allocate和clear的逻辑,实际上就是实现了一个内存池,控制总的内存在640~800MB之间波动。
  • 增加gc频率。程序启动时加环境变量GOGC=12,控制gc步长在12%,例如内存池达到800MB时,会在800*112%=896MB时触发gc,避免内存达到1G上限。

实测进程内存在900MB以下波动,没有hang住。

以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于Golang的相关知识,也可关注golang学习网公众号。

版本声明
本文转载于:脚本之家 如有侵犯,请联系study_golang@163.com删除
goHTTP2的头部压缩算法hpack实现详解goHTTP2的头部压缩算法hpack实现详解
上一篇
goHTTP2的头部压缩算法hpack实现详解
golang进程在docker中OOM后hang住问题解析
下一篇
golang进程在docker中OOM后hang住问题解析
评论列表
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    12次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    22次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    30次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    38次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    35次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码