学会利用 Python Logging 模块的 10 个技巧
来源:编程网
2024-02-22 19:06:20
0浏览
收藏
你在学习文章相关的知识吗?本文《学会利用 Python Logging 模块的 10 个技巧》,主要介绍的内容就涉及到,如果你想提升自己的开发能力,就不要错过这篇文章,大家要知道编程理论基础和实战操作都是不可或缺的哦!

1. 自定义日志级别
除了默认的 DEBUG、INFO、WARNING、ERROR 和 CRITICAL 级别,您可以创建自定义级别。这对于区分不同严重程度的事件非常有用。
import logging
# 创建自定义日志级别
CUSTOM_LEVEL = logging.INFO + 5
logging.addLevelName(CUSTOM_LEVEL, "CUSTOM")
# 创建一个 Logger 并设置自定义日志级别
logger = logging.getLogger("my_logger")
logger.setLevel(CUSTOM_LEVEL)
2. 使用不同处理器
处理器负责将日志事件发送到特定目标,如文件或控制台。您可以自定义处理器以满足您的特定需求。
import logging
# 创建一个 FileHandler 并设置日志文件名
file_handler = logging.FileHandler("my_log.txt")
# 创建一个 StreamHandler 并输出到控制台
stream_handler = logging.StreamHandler()
# 将处理器添加到 Logger
logger = logging.getLogger("my_logger")
logger.addHandler(file_handler)
logger.addHandler(stream_handler)
3. 使用过滤器
过滤器允许您根据特定条件过滤日志事件。这对于仅记录感兴趣的事件非常有用。
import logging
# 创建一个过滤器以过滤 INFO 级别以上的事件
info_filter = logging.Filter()
info_filter.filter = lambda record: record.levelno >= logging.INFO
# 将过滤器添加到 Logger
logger = logging.getLogger("my_logger")
logger.addFilter(info_filter)
4. 格式化日志输出
您可以自定义日志事件的格式,以提供所需的信息。
import logging
# 创建一个 FORMatter 并设置格式字符串
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
# 将 Formatter 添加到处理器
handler = logging.StreamHandler()
handler.setFormatter(formatter)
# 将处理器添加到 Logger
logger = logging.getLogger("my_logger")
logger.addHandler(handler)
5. 使用上下文处理器
上下文处理器允许您在日志记录时添加额外的信息。这对于跟踪请求或事务中的上下文很有用。
import logging
from contextlib import contextmanager
# 创建一个上下文处理器以添加请求 ID
@contextmanager
def request_id_context(request_id):
previous_request_id = logging.currentframe().f_locals.get("request_id")
try:
logging.currentframe().f_locals["request_id"] = request_id
yield
finally:
logging.currentframe().f_locals["request_id"] = previous_request_id
# 使用上下文处理器
logger = logging.getLogger("my_logger")
with request_id_context("1234"):
logger.info("Received request")
6. 使用字典配置
您可以使用字典轻松地配置 Logging 模块。
import logging
# 配置字典
logging_config = {
"version": 1,
"formatters": {
"default": {
"format": "%(asctime)s - %(levelname)s - %(message)s"
}
},
"handlers": {
"file": {
"class": "logging.FileHandler",
"filename": "my_log.txt",
"formatter": "default",
},
"console": {
"class": "logging.StreamHandler",
"formatter": "default",
}
},
"loggers": {
"my_logger": {
"handlers": ["file", "console"],
"level": "INFO",
}
}
}
# 从字典配置 Logging
logging.config.dictConfig(logging_config)
7. 集成第三方包
Logging 模块可以与第三方包集成,例如 Sentry 或 Rollbar。这使您可以轻松地将日志事件发送到远程服务。
import logging import sentry_sdk # 初始化 Sentry 并与 Logging 集成 sentry_sdk.init() logging.basicConfig(level=logging.INFO, handlers=[sentry_sdk.handler.SentryHandler()])
8. 使用多线程支持
Logging 模块支持多线程应用程序。它使用线程本地存储来确保每个线程都有其自己的独立日志处理器。
import logging
import threading
# 创建线程安全的 Logger
logger = logging.getLogger("my_logger")
# 创建一个线程并向 Logger 记录
def thread_function():
logger.info("Executing in a separate thread")
# 启动线程
thread = threading.Thread(target=thread_function)
thread.start()
9. 记录异常
Logging 模块可以自动记录发生的异常。
import logging
# 创建一个 Logger
logger = logging.getLogger("my_logger")
# 记录一个异常
try:
raise Exception("An error occurred")
except Exception as e:
logger.exception(e)
10. 使用扩展日志记录
python 3.8 引入了对扩展日志记录的支持。这允许您创建自定义日志记录函数和处理程序。
import logging
# 创建一个自定义日志记录函数
def my_log_function(logger, level, msg, *args, **kwargs):
# 您的自定义日志记录逻辑
# 添加自定义日志记录函数到 Logger
logger = logging.getLogger("my_logger")
logger.addHandler(logging.NullHandler())
logger.addFilter(logging.Filter())
logger.log = my_log_function
终于介绍完啦!小伙伴们,这篇关于《学会利用 Python Logging 模块的 10 个技巧》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布文章相关知识,快来关注吧!
版本声明
本文转载于:编程网 如有侵犯,请联系study_golang@163.com删除
问题会发生在缓冲和非缓冲通道上
- 上一篇
- 问题会发生在缓冲和非缓冲通道上
- 下一篇
- 为Logrus错误日志添加自定义字段
查看更多
最新文章
-
- 文章 · python教程 | 29分钟前 | sdk 邮件API requests库 smtplib Python邮件发送
- Python发送邮件API调用方法详解
- 165浏览 收藏
-
- 文章 · python教程 | 36分钟前 |
- Pandasmerge_asof快速匹配最近时间数据
- 254浏览 收藏
-
- 文章 · python教程 | 55分钟前 |
- 列表推导式与生成器表达式区别解析
- 427浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Pythonopen函数使用技巧详解
- 149浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python合并多个列表的几种方法
- 190浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python嵌套if语句使用方法详解
- 264浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python队列判空安全方法详解
- 293浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- RuffFormatter尾随逗号设置方法
- 450浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python读取二进制文件的缓冲方法
- 354浏览 收藏
-
- 文章 · python教程 | 3小时前 | Python 数据结构 namedtuple 扑克牌 Card
- Pythonnamedtuple打造扑克牌玩法详解
- 291浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- PythonIQR方法检测异常值详解
- 478浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
查看更多
AI推荐
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3186次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3398次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3429次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4535次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3807次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

