应用NLP大模型解决时间序列问题的五种方法汇总
目前golang学习网上已经有很多关于科技周边的文章了,自己在初次阅读这些文章中,也见识到了很多学习思路;那么本文《应用NLP大模型解决时间序列问题的五种方法汇总》,也希望能帮助到大家,如果阅读完后真的对你学习科技周边有帮助,欢迎动动手指,评论留言并分享~
最近,加利福尼亚大学发布了一篇综述文章,探讨了将自然语言处理领域的预训练大语言模型应用于时间序列预测的方法。该文章总结了5种不同的NLP大模型在时间序列领域的应用方式。接下来,我们将简要介绍这篇综述中提及的这5种方法。
图片
论文标题:Large Language Models for Time Series: A Survey
下载地址:https://arxiv.org/pdf/2402.01801.pdf
图片
1、基于Prompt的方法
通过直接利用prompt的方法,模型可以针对时间序列数据进行预测输出。之前的prompt方法中,基本思路是预训练一个prompt文本,将时间序列数据填充到其中,让模型生成预测结果。例如,在构造描述时间序列任务的文本时,填充时间序列数据,让模型直接输出预测结果。
图片
在处理时间序列时,数字经常被视为文本的一部分,数字的tokenize问题也备受关注。一些方法特别在数字之间加入空格,以便更清晰地区分数字,避免词典中对数字的不合理区分。
2、离散化
这类方法将时间序列进行离散化处理,将连续的数值转换为离散的id化结果,以适配NLP大模型的输入形式。例如,一种方法是借助Vector Quantized-Variational AutoEncoder(VQ-VAE)技术,将时间序列映射成离散的表征。VQ-VAE是一种VAE基础上的autoencoder结构,VAE通过Encoder将原始输入映射成表征向量,再通过Decoder还原原始数据。而VQ-VAE则保证了中间生成的表征向量是离散化的。根据这个离散化表征向量构造成一个词典,实现时间序列数据离散化的映射。另一种方法是基于K-means的离散化,利用Kmeans生成的质心将原始的时间序列离散化。另外再一些工作中,也将时间序列直接转换成文本,例如在一些金融场景中,将每天的涨价、降价等信息直接转换成相应的字母符号作为NLP大模型的输入。
图片
3、时间序列-文本对齐
这类方法借助到多模态领域的对齐技术,将时间序列的表征对齐到文本空间,以此实现时间序列数据直接输入到NLP大模型的目标。
在这类方法中,一些多模态对齐的方法被广泛应用其中。一种最典型的就是基于对比学习的多模态对齐,类似CLIP,使用时间序列编码器和大模型分别输入时间序列和文本的表示向量,然后使用对比学习拉近正样本对之间的距离,在隐空间对齐时间序列数据和文本数据的表征。
另一种方法是基于时间序列数据的finetune,以NLP大模型作为backbone,在此基础上引入额外的网络适配时间序列数据。这其中,LoRA等跨模态finetune的高效方法比较常见,冻结backbone的大部分参数,只对小部分参数进行finetune,或者引入少量的adaptor参数进行finetune,以达到多模态对齐的效果。
图片
4、引入视觉信息
这种方法比较少见,一般是将时间序列和视觉信息建立联系,再将利用图像和文本已经经过比较深入研究的多模态能力引入进来,为下游任务提取有效的特征。例如ImageBind中对6个模态的数据进行统一的对齐,其中就包括时间序列类型的数据,实现多模态的大模型统一。一些金融领域的模型,将股票的价格转换成图表数据,再配合CLIP进行图文对齐,生成图表相关的特征用于下游的时间序列任务。
5、大模型工具
这类方法不再对NLP大模型进行模型上的改进,或者改造时间序列数据形式进行大模型适配,而是直接将NLP大模型当成一个工具,解决时间序列问题。例如,让大模型生成解决时间序列预测的代码,应用到时间序列预测上;或者是让大模型调用开源的API解决时间序列问题。当然这类方式就比较偏向实际应用了。
最后,文中总结了各类方法的代表工作以及代表数据集:
图片
图片
今天带大家了解了的相关知识,希望对你有所帮助;关于科技周边的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~
为什么“1的负数等于-2”?
- 上一篇
- 为什么“1的负数等于-2”?
- 下一篇
- 为何在项目中路径设置为 os.Getenv("GOMOD"), path = ""?
-
- 科技周边 · 人工智能 | 2小时前 | 文本处理 编码转换 乱码 DeepSeekOCR 纯文本粘贴
- DeepSeekOCR乱码问题解决方法
- 119浏览 收藏
-
- 科技周边 · 人工智能 | 3小时前 |
- Z-Image:阿里通义新推出的图像生成模型
- 303浏览 收藏
-
- 科技周边 · 人工智能 | 6小时前 |
- 豆包AI怎么切换语言多语言设置方法
- 500浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3190次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3402次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3433次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4540次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3811次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览

