MoE大模型手写教程,从零开始,高手专享
知识点掌握了,还需要不断练习才能熟练运用。下面golang学习网给大家带来一个科技周边开发实战,手把手教大家学习《MoE大模型手写教程,从零开始,高手专享》,在实现功能的过程中也带大家重新温习相关知识点,温故而知新,回头看看说不定又有不一样的感悟!
传说中GPT-4的“致胜法宝”——MoE(混合专家)架构,自己也能手搓了!
Hugging Face上有一位机器学习大神,分享了如何从头开始建立一套完整的MoE系统。
这个项目被作者叫做MakeMoE,详细讲述了从注意力构建到形成完整MoE模型的过程。
作者介绍,MakeMoE是受到OpenAI创始成员Andrej Karpathy的makemore启发并以之为基础编写的。
makemore是一个针对自然语言处理和机器学习的教学项目,意在帮助学习者理解并实现一些基本模型。
同样,MakeMoE也是在一步步的搭建过程中,帮助学习者更深刻地理解混合专家模型。
那么,这份“手搓攻略”具体都讲了些什么呢?
从头开始搭建MoE模型
和Karpathy的makemore相比,MakeMoE用稀疏的专家混合体代替了孤立的前馈神经网络,同时加入了必要的门控逻辑。
同时,由于过程中需要用到ReLU激活函数,makemore中的默认初始化方式被替换成了Kaiming He方法。
想要创建一个MoE模型,首先要理解自注意力机制。
模型首先通过线性变换,将输入序列变换成用查询(Q)、键(K)和值(V)表示的参数。
这些参数随后被用于计算注意力分数,这些分数决定了在生成每个token时,模型对序列中每个位置的关注程度。
为了确保模型在生成文本时的自回归特性,即只能基于已经生成的token来预测下一个token,作者使用了多头因果自注意力机制。
这种机制通过一个掩码来实现将未处理的位置的注意力分数设置为负无穷大,这样这些位置的权重就会变为零。
多头因果则是让模型并行地执行多个这样的注意力计算,每个头关注序列的不同部分。
完成自注意力机制的配置后,就可以创建专家模块了,这里的“专家模块”是一种多层感知器。
每个专家模块包含一个线性层,它将嵌入向量映射到一个更大的维度,然后通过非线性激活函数(如ReLU),再通过另一个线性层将向量映射回原始的嵌入维度。
这样的设计使得每个专家能够专注于处理输入序列的不同部分,并通过门控网络来决定在生成每个token时应该激活哪些专家。
于是,接下来就要开始构建分配和管理专家的组件——门控网络。
这里的门控网络同样是通过一个线性层实现,该层将自注意力层的输出映射到专家模块的数量。
这个线性层的输出是一个分数向量,每个分数代表了对应专家模块对于当前处理的token的重要性。
门控网络会计算这个分数向量的top-k值并记录其索引,然后从中选择top-k个最大的分数,用来加权对应的专家模块输出。
为了在训练过程中增加模型的探索性,作者还引入了噪声,避免所有token都倾向于被相同的专家处理。
这种噪声通常通过在分数向量上添加随机的高斯噪声实现。
获得结果后,模型有选择地将前k个值与相应token的前k个专家的输出相乘,然后相加形成加权和,构成模型的输出。
最后,将这些模块在一起,就得到一个MoE模型了。
针对以上的整个过程,作者都提供了相应的代码,可以到原文中具体了解。
另外,作者还制作了端到端的Jupyter笔记,可以在学习各模块的同时直接运行。
感兴趣的话,就赶快学起来吧!
原文地址:https://huggingface.co/blog/AviSoori1x/makemoe-from-scratch
笔记版本(GitHub):https://github.com/AviSoori1x/makeMoE/tree/main
今天关于《MoE大模型手写教程,从零开始,高手专享》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于AI,数据的内容请关注golang学习网公众号!

- 上一篇
- GitHub Copilot代码生成的可维护性差,倾向于无脑重写而不是重构复用已有代码

- 下一篇
- LLM嵌入学习:自动适配100种语言,支持数十万下游任务,无需人工标注
-
- 科技周边 · 人工智能 | 13小时前 |
- 小米SU7订单18万未交付,月产能暴增6倍
- 361浏览 收藏
-
- 科技周边 · 人工智能 | 13小时前 | iPhone17Pro 天蓝色 M4MacBookAir
- iPhone17Pro/ProMax弃钛金属,拥抱天蓝色
- 272浏览 收藏
-
- 科技周边 · 人工智能 | 16小时前 |
- 问界M8快报:MAX+版最火,BAL车主热捧
- 335浏览 收藏
-
- 科技周边 · 人工智能 | 18小时前 |
- 港大与Adobe联手推出PixelFlow图像生成模型
- 135浏览 收藏
-
- 科技周边 · 人工智能 | 21小时前 | 摩尔线程 招聘诈骗 @mthreads.com 官方客服 法律责任
- 摩尔线程重磅声明发布
- 406浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 谱乐AI
- 谱乐AI是由青岛艾夫斯科技有限公司开发的AI音乐生成工具,采用Suno和Udio模型,支持多种音乐风格的创作。访问https://yourmusic.fun/,体验智能作曲与编曲,个性化定制音乐,提升创作效率。
- 4次使用
-
- Vozo AI
- 探索Vozo AI,一款功能强大的在线AI视频换脸工具,支持跨性别、年龄和肤色换脸,适用于广告本地化、电影制作和创意内容创作,提升您的视频制作效率和效果。
- 4次使用
-
- AIGAZOU-AI图像生成
- AIGAZOU是一款先进的免费AI图像生成工具,无需登录即可使用,支持中文提示词,生成高清图像。适用于设计、内容创作、商业和艺术领域,提供自动提示词、专家模式等多种功能。
- 4次使用
-
- Raphael AI
- 探索Raphael AI,一款由Flux.1 Dev支持的免费AI图像生成器,无需登录即可无限生成高质量图像。支持多种风格,快速生成,保护隐私,适用于艺术创作、商业设计等多种场景。
- 4次使用
-
- Canva可画AI生图
- Canva可画AI生图利用先进AI技术,根据用户输入的文字描述生成高质量图片和插画。适用于设计师、创业者、自由职业者和市场营销人员,提供便捷、高效、多样化的视觉素材生成服务,满足不同需求。
- 5次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览