当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 智能模型利用Transformer技术从庞大数据中学习物理现象,并成功应用于视频生成

智能模型利用Transformer技术从庞大数据中学习物理现象,并成功应用于视频生成

来源:51CTO.COM 2024-02-01 11:27:38 0浏览 收藏

有志者,事竟成!如果你在学习科技周边,那么本文《智能模型利用Transformer技术从庞大数据中学习物理现象,并成功应用于视频生成》,就很适合你!文章讲解的知识点主要包括,若是你对本文感兴趣,或者是想搞懂其中某个知识点,就请你继续往下看吧~

建立会做视频的世界模型,也能通过Transformer来实现了!

来自清华和极佳科技的研究人员联手,推出了全新的视频生成通用世界模型——WorldDreamer。

它可以完成多种视频生成任务,包括自然场景和自动驾驶场景,如文生视频、图生视频、视频编辑、动作序列生视频等。

从20亿数据中学习物理世界,基于Transformer的通用世界模型成功挑战视频生成

据团队介绍,通过预测Token的方式来建立通用场景世界模型,WorldDreamer是业界首个。

它把视频生成转换为一个序列预测任务,可以对物理世界的变化和运动规律进行充分地学习。

可视化实验已经证明,WorldDreamer已经深刻理解了通用世界的动态变化规律。

那么,它都能完成哪些视频任务,效果如何呢?

支持多种视频任务

图像生成视频(Image to Video)

WorldDreamer可以基于单一图像预测未来的帧。

只需首张图像输入,WorldDreamer将剩余的视频帧视为被掩码的视觉Token,并对这部分Token进行预测。

如下图所示,WorldDreamer具有生成高质量电影级别视频的能力。

其生成的视频呈现出无缝的逐帧运动,类似于真实电影中流畅的摄像机运动。

而且,这些视频严格遵循原始图像的约束,确保帧构图的显著一致性。

从20亿数据中学习物理世界,基于Transformer的通用世界模型成功挑战视频生成

文本生成视频(Text to Video)

WorldDreamer还可以基于文本进行视频生成。

仅仅给定语言文本输入,此时WorldDreamer认为所有的视频帧都是被掩码的视觉Token,并对这部分Token进行预测。

下图展示了WorldDreamer在各种风格范式下从文本生成视频的能力。

生成的视频与输入语言无缝契合,其中用户输入的语言可以塑造视频内容、风格和相机运动。

从20亿数据中学习物理世界,基于Transformer的通用世界模型成功挑战视频生成

视频修改(Video Inpainting)

WorldDreamer进一步可以实现视频的inpainting任务。

具体来说,给定一段视频,用户可以指定mask区域,然后根据语言的输入可以更改被mask区域的视频内容。

如下图所示,WorldDreamer可以将水母更换为熊,也可以将蜥蜴更换为猴子,且更换后的视频高度符合用户的语言描述。

从20亿数据中学习物理世界,基于Transformer的通用世界模型成功挑战视频生成

视频风格化(Video Stylization)

除此以外,WorldDreamer可以实现视频的风格化。

如下图所示,输入一个视频段,其中某些像素被随机掩码,WorldDreamer可以改变视频的风格,例如根据输入语言创建秋季主题效果。

从20亿数据中学习物理世界,基于Transformer的通用世界模型成功挑战视频生成

基于动作合成视频(Action to Video)

WorldDreamer也可以实现在自动驾驶场景下的驾驶动作到视频的生成。

如下图所示,给定相同的初始帧以及不同的驾驶策略(如左转、右转),WorldDreamer可以生成高度符合首帧约束以及驾驶策略的视频。

从20亿数据中学习物理世界,基于Transformer的通用世界模型成功挑战视频生成

那么,WorldDreamer又是怎样实现这些功能的呢?

用Transformer构建世界模型

研究人员认为,目前最先进的视频生成方法主要分为两类——基于Transformer的方法和基于扩散模型的方法。

利用Transformer进行Token预测可以高效学习到视频信号的动态信息,并可以复用大语言模型社区的经验,因此,基于Transformer的方案是学习通用世界模型的一种有效途径。

而基于扩散模型的方法难以在单一模型内整合多种模态,且难以拓展到更大参数,因此很难学习到通用世界的变化和运动规律。

而当前的世界模型研究主要集中在游戏、机器人和自动驾驶领域,缺乏全面捕捉通用世界变化和运动规律的能力。

所以,研究团队提出了WorldDreamer来加强对通用世界的变化和运动规律的学习理解,从而显著增强视频生成的能力。

借鉴大型语言模型的成功经验,WorldDreamer采用Transformer架构,将世界模型建模框架转换为一个无监督的视觉Token预测问题。

具体的模型结构如下图所示:

从20亿数据中学习物理世界,基于Transformer的通用世界模型成功挑战视频生成

WorldDreamer首先使用视觉Tokenizer将视觉信号(图像和视频)编码为离散的Token。

这些Token在经过掩蔽处理后,输入给研究团队提出的Sptial Temporal Patchwuse Transformer(STPT)模块。

同时,文本和动作信号被分别编码为对应的特征向量,以作为多模态特征一并输入给STPT。

STPT在内部对视觉、语言、动作等特征进行充分的交互学习,并可以预测被掩码部分的视觉Token。

最终,这些预测出的视觉Token可以用来完成各种各样的视频生成和视频编辑任务。

从20亿数据中学习物理世界,基于Transformer的通用世界模型成功挑战视频生成

值得注意的是,在训练WorldDreamer时,研究团队还构建了Visual-Text-Action(视觉-文本-动作)数据的三元组,训练时的损失函数仅涉及预测被掩蔽的视觉Token,没有额外的监督信号。

而在团队提出的这个数据三元组中,只有视觉信息是必须的,也就是说,即使在没有文本或动作数据的情况下,依然可以进行WorldDreamer的训练。

这种模式不仅降低了数据收集的难度,还使得WorldDreamer可以支持在没有已知或只有单一条件的情况下完成视频生成任务。

研究团队使用大量数据对WorldDreamer进行训练,其中包括20亿经过清洗的图像数据、1000万段通用场景的视频、50万段高质量语言标注的视频、以及近千段自动驾驶场景视频。

团队对10亿级别的可学习参数进行了百万次迭代训练,收敛后的WorldDreamer逐渐理解了物理世界的变化和运动规律,并拥有了各种的视频生成和视频编辑能力。

论文地址:https://arxiv.org/abs/2401.09985
项目主页:https://world-dreamer.github.io/

文中关于AI,视频的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《智能模型利用Transformer技术从庞大数据中学习物理现象,并成功应用于视频生成》文章吧,也可关注golang学习网公众号了解相关技术文章。

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
如何将Mac苹果屏幕投射到电视上?如何将Mac苹果屏幕投射到电视上?
上一篇
如何将Mac苹果屏幕投射到电视上?
使用零训练数据的VAST、港大和清华实现了3D模型的核心理论重构
下一篇
使用零训练数据的VAST、港大和清华实现了3D模型的核心理论重构
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 毕业宝AIGC检测:AI生成内容检测工具,助力学术诚信
    毕业宝AIGC检测
    毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
    7次使用
  • AI Make Song:零门槛AI音乐创作平台,助你轻松制作个性化音乐
    AI Make Song
    AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
    26次使用
  • SongGenerator.io:零门槛AI音乐生成器,快速创作高质量音乐
    SongGenerator
    探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
    21次使用
  •  BeArt AI换脸:免费在线工具,轻松实现照片、视频、GIF换脸
    BeArt AI换脸
    探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
    26次使用
  • SEO标题协启动:AI驱动的智能对话与内容生成平台 - 提升创作效率
    协启动
    SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
    26次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码