当前位置:首页 > 文章列表 > 文章 > python教程 > 深入解析NumPy函数的完整指南

深入解析NumPy函数的完整指南

2024-01-26 09:19:21 0浏览 收藏

来到golang学习网的大家,相信都是编程学习爱好者,希望在这里学习文章相关编程知识。下面本篇文章就来带大家聊聊《深入解析NumPy函数的完整指南》,介绍一下,希望对大家的知识积累有所帮助,助力实战开发!

NumPy(Numerical Python)是一个开源的Python科学计算库,提供了多维数组对象和对数组进行操作的工具。它是Python数据科学生态系统的核心库之一,被广泛用于科学计算、数据分析和机器学习等领域。本文将逐一解析NumPy库中的常用函数,包括数组创建、数组操作、数学函数、统计函数和线性代数等方面,并提供具体的代码示例。

  1. 数组创建
    NumPy提供了多种创建数组的方法,可以通过指定维度、数据类型以及初始化值等方式来创建数组。常用的函数有:

1.1 numpy.array():从列表或元组中创建数组。

import numpy as np

arr = np.array([1, 2, 3, 4, 5])
print(arr)

# 输出:[1 2 3 4 5]

1.2 numpy.zeros():创建指定维度的全零数组。

import numpy as np

arr = np.zeros((3, 4))
print(arr)

"""
输出:
[[0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]]
"""

1.3 numpy.ones():创建指定维度的全一数组。

import numpy as np

arr = np.ones((2, 3))
print(arr)

"""
输出:
[[1. 1. 1.]
 [1. 1. 1.]]
"""

1.4 numpy.arange():创建等差数组。

import numpy as np

arr = np.arange(0, 10, 2)
print(arr)

# 输出:[0 2 4 6 8]
  1. 数组操作
    NumPy提供了许多数组操作的函数,包括形状操作、索引和切片、扩展和堆叠以及数组转置等。常用的函数有:

2.1 reshape():改变数组的形状。

import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])
new_arr = arr.reshape((3, 2))
print(new_arr)

"""
输出:
[[1 2]
 [3 4]
 [5 6]]
"""

2.2 indexing和slicing:通过索引和切片操作数组。

import numpy as np

arr = np.array([1, 2, 3, 4, 5])
print(arr[2])       # 输出:3
print(arr[1:4])     # 输出:[2 3 4]
print(arr[:3])      # 输出:[1 2 3]
print(arr[-3:])     # 输出:[3 4 5]

2.3 concatenate():将两个或多个数组进行拼接。

import numpy as np

arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])
arr = np.concatenate((arr1, arr2))
print(arr)

# 输出:[1 2 3 4 5 6]

2.4 transpose():对数组进行转置。

import numpy as np

arr = np.array([[1, 2], [3, 4]])
new_arr = np.transpose(arr)
print(new_arr)

"""
输出:
[[1 3]
 [2 4]]
"""
  1. 数学函数
    NumPy提供了丰富的数学函数,如数值运算、三角函数、对数函数、指数函数等。常用的函数有:

3.1 np.mean():计算数组的平均值。

import numpy as np

arr = np.array([1, 2, 3, 4, 5])
mean = np.mean(arr)
print(mean)

# 输出:3.0

3.2 np.sin():计算数组元素的正弦值。

import numpy as np

arr = np.array([0, np.pi/2, np.pi])
sin = np.sin(arr)
print(sin)

# 输出:[0.         1.         1.2246468e-16]

3.3 np.exp():对数组元素进行指数运算。

import numpy as np

arr = np.array([1, 2, 3])
exp = np.exp(arr)
print(exp)

# 输出:[ 2.71828183  7.3890561  20.08553692]
  1. 统计函数
    NumPy提供了常用的统计函数,包括最大值、最小值、中位数、方差和标准差等。常用的函数有:

4.1 np.max():计算数组的最大值。

import numpy as np

arr = np.array([1, 2, 3, 4, 5])
max_value = np.max(arr)
print(max_value)

# 输出:5

4.2 np.min():计算数组的最小值。

import numpy as np

arr = np.array([1, 2, 3, 4, 5])
min_value = np.min(arr)
print(min_value)

# 输出:1

4.3 np.median():计算数组的中位数。

import numpy as np

arr = np.array([1, 2, 3, 4, 5])
median = np.median(arr)
print(median)

# 输出:3.0

4.4 np.var():计算数组的方差。

import numpy as np

arr = np.array([1, 2, 3, 4, 5])
variance = np.var(arr)
print(variance)

# 输出:2.0
  1. 线性代数
    NumPy提供了基本的线性代数运算函数,如矩阵乘法、矩阵求逆、矩阵行列式等。常用的函数有:

5.1 np.dot():计算两个数组的点积。

import numpy as np

arr1 = np.array([[1, 2], [3, 4]])
arr2 = np.array([[5, 6], [7, 8]])
dot_product = np.dot(arr1, arr2)
print(dot_product)

"""
输出:
[[19 22]
 [43 50]]
"""

5.2 np.linalg.inv():计算矩阵的逆。

import numpy as np

arr = np.array([[1, 2], [3, 4]])
inverse = np.linalg.inv(arr)
print(inverse)

"""
输出:
[[-2.   1. ]
 [ 1.5 -0.5]]
"""

以上仅仅是NumPy库中函数的一部分,通过了解这些常用函数的使用方法,我们能更高效地使用NumPy进行数组操作、数学运算、统计分析和线性代数等计算任务。同时,通过深入学习NumPy库的相关文档,我们可以发现更多强大的函数和功能,为我们的科学计算工作提供有力的支持。

以上就是《深入解析NumPy函数的完整指南》的详细内容,更多关于函数,Numpy,解析的资料请关注golang学习网公众号!

优化网页性能:解决重绘和回流对页面加载速度的影响优化网页性能:解决重绘和回流对页面加载速度的影响
上一篇
优化网页性能:解决重绘和回流对页面加载速度的影响
PHP5与PHP8:改进的性能和安全性对比
下一篇
PHP5与PHP8:改进的性能和安全性对比
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 千音漫语:智能声音创作助手,AI配音、音视频翻译一站搞定!
    千音漫语
    千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
    200次使用
  • MiniWork:智能高效AI工具平台,一站式工作学习效率解决方案
    MiniWork
    MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
    203次使用
  • NoCode (nocode.cn):零代码构建应用、网站、管理系统,降低开发门槛
    NoCode
    NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
    198次使用
  • 达医智影:阿里巴巴达摩院医疗AI影像早筛平台,CT一扫多筛癌症急慢病
    达医智影
    达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
    206次使用
  • 智慧芽Eureka:更懂技术创新的AI Agent平台,助力研发效率飞跃
    智慧芽Eureka
    智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
    222次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码