分享提高工作效率的numpy函数技巧和实例案例
哈喽!大家好,很高兴又见面了,我是golang学习网的一名作者,今天由我给大家带来一篇《分享提高工作效率的numpy函数技巧和实例案例》,本文主要会讲到等等知识点,希望大家一起学习进步,也欢迎大家关注、点赞、收藏、转发! 下面就一起来看看吧!
提高工作效率的numpy函数技巧与实例分享
引言:
在数据处理和科学计算领域,使用Python的numpy库是非常常见的。numpy提供了一系列强大的函数和工具,能够方便地进行大规模数据操作和计算。本文将介绍一些提高工作效率的numpy函数技巧,并提供具体的代码示例。
一、矢量化操作
numpy的矢量化操作是其最强大的功能之一。通过矢量化操作,可以避免使用for循环对每个元素进行操作,从而大大提高运算速度。
示例代码1:计算矩阵的行、列的和
import numpy as np m = np.random.rand(1000, 1000) # 使用for循环 row_sum = np.zeros(1000) col_sum = np.zeros(1000) for i in range(1000): for j in range(1000): row_sum[i] += m[i][j] col_sum[j] += m[i][j] # 使用矢量化操作 row_sum = np.sum(m, axis=1) col_sum = np.sum(m, axis=0)
示例代码2:计算两个数组的加权平均值
import numpy as np a = np.array([1, 2, 3]) b = np.array([4, 5, 6]) weights = np.array([0.2, 0.3, 0.5]) # 使用for循环 result = 0 for i in range(3): result += a[i] * b[i] * weights[i] # 使用矢量化操作 result = np.dot(np.multiply(a, b), weights)
二、广播
广播是numpy中的一种功能,使得不同维度数组之间的运算变得非常方便。通过广播,我们可以仅仅对一个数组进行操作,而不需要显式地进行维度匹配。
示例代码3:计算数组的均方差
import numpy as np a = np.array([1, 2, 3]) mean = np.mean(a) var = np.sqrt(np.mean((a - mean) ** 2))
示例代码4:将矩阵的每一行减去对应行的均值
import numpy as np m = np.random.rand(1000, 1000) mean = np.mean(m, axis=1) m -= mean[:, np.newaxis]
三、切片和索引技巧
numpy提供了丰富的切片和索引技巧,可以方便地对数组进行截取和筛选。
示例代码5:随机抽取数组中的部分元素
import numpy as np a = np.arange(100) np.random.shuffle(a) selected = a[:10]
示例代码6:筛选数组中满足条件的元素
import numpy as np a = np.array([1, 2, 3, 4, 5, 6]) selected = a[a > 3]
四、通用函数和聚合函数
numpy提供了大量的通用函数和聚合函数,可以方便地对数组进行各种数学和统计操作。
示例代码7:将数组的元素取绝对值
import numpy as np a = np.array([-1, -2, -3, 4, 5, 6]) abs_a = np.abs(a)
示例代码8:计算数组的和、平均值和最大值
import numpy as np a = np.array([1, 2, 3, 4, 5, 6]) sum_a = np.sum(a) mean_a = np.mean(a) max_a = np.max(a)
总结:
本文介绍了一些提高工作效率的numpy函数技巧,并提供了具体的代码示例。通过矢量化操作、广播、切片和索引技巧以及通用函数和聚合函数的使用,我们可以在数据处理和科学计算中更加高效地使用numpy。希望本文对大家的工作有所帮助!
终于介绍完啦!小伙伴们,这篇关于《分享提高工作效率的numpy函数技巧和实例案例》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布文章相关知识,快来关注吧!

- 上一篇
- 前端性能优化:减少HTML回流和重绘的关键步骤

- 下一篇
- 探究CSS回流和重绘对性能的影响
-
- 文章 · python教程 | 12分钟前 |
- PyCharm正确启动与设置教程
- 190浏览 收藏
-
- 文章 · python教程 | 34分钟前 |
- Fabric自动化部署教程详解
- 257浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- NumPy数组筛选:基于相邻差值的高效方法
- 324浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- PyTorch转ONNX:无环境高效推理技巧
- 414浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- PyTorch安装卡顿?解决幽灵问题全攻略
- 370浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python中如何使用装饰器?语法与应用场景
- 175浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Pandas提取ODS/Excel单元格注释技巧
- 139浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python向量化计算怎么实现?
- 441浏览 收藏
-
- 文章 · python教程 | 4小时前 | Python版本 查看Python版本
- Mac查看Python版本方法及实用工具推荐
- 186浏览 收藏
-
- 文章 · python教程 | 4小时前 | 协程 异步编程 asyncio 事件循环 async/await
- asyncio异步编程基础教程
- 260浏览 收藏
-
- 文章 · python教程 | 6小时前 |
- Docker容器化Python应用教程
- 478浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 515次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 499次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- AI Mermaid流程图
- SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
- 770次使用
-
- 搜获客【笔记生成器】
- 搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
- 785次使用
-
- iTerms
- iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
- 806次使用
-
- TokenPony
- TokenPony是讯盟科技旗下的AI大模型聚合API平台。通过统一接口接入DeepSeek、Kimi、Qwen等主流模型,支持1024K超长上下文,实现零配置、免部署、极速响应与高性价比的AI应用开发,助力专业用户轻松构建智能服务。
- 869次使用
-
- 迅捷AIPPT
- 迅捷AIPPT是一款高效AI智能PPT生成软件,一键智能生成精美演示文稿。内置海量专业模板、多样风格,支持自定义大纲,助您轻松制作高质量PPT,大幅节省时间。
- 756次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览