被AAAI 2024选中的首个通用双向Adapter多模态目标追踪方法——BAT
科技周边小白一枚,正在不断学习积累知识,现将学习到的知识记录一下,也是将我的所得分享给大家!而今天这篇文章《被AAAI 2024选中的首个通用双向Adapter多模态目标追踪方法——BAT》带大家来了解一下##content_title##,希望对大家的知识积累有所帮助,从而弥补自己的不足,助力实战开发!
目标跟踪是计算机视觉的基础任务之一,近年来,单模态(RGB)目标跟踪取得了重大进展。然而,由于单一成像传感器的限制,我们需要引入多模态图像(如RGB、红外等)来弥补这一缺陷,以实现在复杂环境下的全天候目标跟踪。这种多模态图像的应用可以提供更全面的信息,增强目标检测和跟踪的准确性和鲁棒性。多模态目标跟踪的发展对于实现更高水平的计算机视觉应用具有重要意义。
然而,现有的多模态跟踪任务也面临两个主要问题:
- 由于多模态目标跟踪的数据标注成本高,大多数现有数据集规模有限,不足以支持构建有效的多模态跟踪器;
- 因为不同的成像方式在变化的环境中对物体的敏感度不同,开放世界中主导模态是动态变化的,多模态数据之间的主导相关性并不固定。
在RGB序列上进行预训练,然后完全微调到多模态场景的许多多模态跟踪工作存在时间和效率问题,同时性能有限。
除了完全微调方法之外,还受到自然语言处理(NLP)领域参数高效微调方法的启发。最近的一些方法在多模态跟踪中引入了参数高效prompt微调。这些方法通过冻结骨干网络参数,并添加一组额外可学习的参数来实现。
通常,这些方法主要以一种模态(通常是RGB)作为主要模态,而另一种模态则作为辅助模态。然而,这种方法忽视了多模态数据之间的动态关联性,因此在复杂场景中无法充分利用多模态信息的互补效果,从而限制了跟踪性能。
图 1:复杂场景下不同的主导模态。
为了解决上述问题,天津大学的研究人员提出了一种名为双向适配器用于多模态跟踪(BAT)的解决方案。与传统方法不同的是,BAT方法不依赖于固定的主导模态和辅助模态,而是通过动态提取有效信息的过程中,在辅助模态向主导模态的变化中获得更好的性能。这种方法的创新之处在于它能够适应不同的数据特征和任务需求,从而提高基础模型在下游任务中的表示能力。通过使用BAT方法,研究人员希望能够提供一种更加灵活和高效的多模态跟踪解决方案,为相关领域的研究和应用带来更好的效果。
BAT 由两个特定于模态分支的共享参数的基础模型编码器和一个通用的双向适配器组成。在训练过程中,BAT 并没有对基础模型进行全面微调,而是采用了逐步训练的方法。每个特定的模态分支都是通过使用固定参数的基础模型进行初始化的,只训练新增的双向适配器。每个模态分支从其他模态中学习提示信息,并与当前模态的特征信息相结合,以增强表征能力。两个特定模态的分支通过通用双向适配器进行交互,动态地相互融合主导和辅助信息,以适应多模态非固定关联的范式。这种设计使得BAT能够在不改变原内容意思的情况下微调内容,提高模型的表征能力和适应性。
通用双向适配器采用轻量级沙漏结构,可以嵌入到基础模型的每一层transformer编码器中,避免引入大量可学习参数。通过仅增加少量的训练参数(0.32M),与全微调方法和基于提示学习的方法相比,通用双向适配器具有更低的训练成本,并获得更好的跟踪性能。
论文《Bi-directional Adapter for Multi-modal Tracking》:
论文链接:https://arxiv.org/abs/2312.10611
代码链接:https://github.com/SparkTempest/BAT
主要贡献
- 我们首先提出了一个基于 adapter 的多模态跟踪视觉提示框架。我们的模型能够感知开放场景中主导模态的动态变化,以自适应的方式有效融合多模态信息。
- 据我们所知,我们首次为基础模型提出了一个通用的双向 adapter。它结构简单、高效,能有效地实现多模态交叉提示跟踪。通过仅添加 0.32M 可学习参数,我们的模型可以鲁棒应对开放场景下的多模态跟踪。
- 我们深入分析了我们的通用 adapter 在不同层深的影响。我们还在实验中探索了更高效的 adapter 架构,并验证了我们在多个 RGBT 跟踪相关数据集上的优势。
核心方法
如图 2 所示,我们提出了一个基于双向 Adapter 的多模态追踪视觉提示框架 (BAT),框架具有 RGB 模态和热红外模态的双流编码器结构,每个流使用相同的基础模型参数。双向 Adapter 与双流编码器层并行设置,从两个模态相互交叉提示多模态数据。
方法没有对基础模型进行完全的微调,仅通过学习轻量级双向 Adapter,将预先训练好的 RGB 追踪器高效地转移到多模态场景中,实现了出色的多模态互补性和卓越的追踪精度。
图 2:BAT 的总体架构。
首先将每种模态的模板帧(第一帧中目标物体的初始框
)和
搜索帧(后续追踪图像)转换为
,将它们拼接在一起分别传递给 N 层双流 transformer 编码器。
双向 adapter 与双流编码器层并行设置,可以学习从一种模态到另一种模态的特征提示。为此,将两个分支的输出特征相加并输入到预测头 H 中,得到最终的跟踪结果框 B。
双向 adapter 采用模块化设计,分别嵌入到多头自注意力阶段和 MLP 阶段,如图 1 右侧所示双向 adapter 的详细结构,其设计用于将特征提示从一种模态转移到另一种模态。它由三个线性投影层组成,tn 表示每个模态的 token 个数,输入 token 首先通过下投影被降维为 de 并通过一个线性投影层,然后向上投影到原始维度 dt 并作为特征提示反馈到其他模态的 transformer 编码器层。
通过这种简单的结构,双向 adapter 可以有效地在 模态之间进行特征提示,实现多模态跟踪。
由于冻结了 transformer 编码器和预测头,因此只需要优化新增 adapter 的参数。值得注意的是,与大多数传统 adapter 不同,我们的双向 adapter 是作为动态变化的主导模态的跨模态特征提示而发挥作用的,确保了开放世界中良好的跟踪性能。
实验效果
如表 1 所示,在 RGBT234 和 LasHeR 两个数据集上的对比表明我们在的方法在准确率和成功率上均优于最先进的方法。如图 3 所示,在 LasHeR 数据集的不同场景属性下,与最先进方法的性能比较也证明了所提出方法的优越性。
这些实验充分证明了我们的双流追踪框架与双向 Adapter 成功地追踪了大多数复杂环境中的目标,并自适应地从动态变化的主导 - 辅助模态中提取有效信息,达到了最先进的性能。
表 1 RGBT234 和 LasHeR 数据集上的整体性能。
图 3 LasHeR 数据集中不同属性下 BAT 和竞争方法的比较。
实验证明我们在复杂场景中从不断变化的主导 - 辅助模式中动态提示有效信息的有效性。如图 4 所示,与固定主导模态的相关方法相比,我们的方法即使在 RGB 完全不可用的情况下也能有效地追踪目标,当 RGB 和 TIR 在后续场景中都能提供有效的信息时,追踪效果要好得多。我们的双向 Adapter 从 RGB 和 IR 模态中动态提取目标的有效特征,捕获更准确的目标响应位置,并消除 RGB 模态的干扰。
图 4 跟踪结果的可视化。
我们同样在 RGBE 追踪数据集上评估了我们的方法。如图 5 所示,在 VisEvent 测试集上与其他方法相比,我们的方法在不同复杂场景下的追踪结果最为准确,证明了我们的 BAT 模型的有效性和泛化性。
图 5 VisEvent 数据集下追踪结果。
图 6 attention 权重可视化。
我们在图 6 中可视化了不同层跟踪目标的注意力权重。与 baseline-dual (基础模型参数初始化的双流框架) 方法相比,我们的 BAT 有效地驱动辅助模态向主导模态学习更多的互补信息,同时随着网络深度的增加保持主导模态的有效性,从而提高了整体跟踪性能。
实验表明,BAT 成功地捕获了多模态互补信息,实现了样本自适应动态跟踪。
好了,本文到此结束,带大家了解了《被AAAI 2024选中的首个通用双向Adapter多模态目标追踪方法——BAT》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多科技周边知识!

- 上一篇
- Meta和纽约大学合作开发OK-Robot,带来了理想中的自动倒茶机器人

- 下一篇
- 正常版切换回win10s模式
-
- 科技周边 · 人工智能 | 3小时前 |
- 即梦AI粒子特效攻略动态元素生成指南
- 499浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- 理想蝉联冠军,小米第六,新势力车企上周销量榜
- 257浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- 剪映+DeepSeek:短视频爆款脚本与智能剪辑攻略
- 242浏览 收藏
-
- 科技周边 · 人工智能 | 5小时前 |
- 即梦ai导出4K视频攻略超清分辨率设置教程
- 446浏览 收藏
-
- 科技周边 · 人工智能 | 5小时前 |
- 零门槛硬件配置,DeepSeek满血功能畅享教程
- 303浏览 收藏
-
- 科技周边 · 人工智能 | 5小时前 |
- 苹果CarPlayUltra震撼发布多品牌即将引入
- 440浏览 收藏
-
- 科技周边 · 人工智能 | 5小时前 |
- 即梦ai循环动画教程无缝衔接功能详解
- 230浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 魔匠AI
- SEO摘要魔匠AI专注于高质量AI学术写作,已稳定运行6年。提供无限改稿、选题优化、大纲生成、多语言支持、真实参考文献、数据图表生成、查重降重等全流程服务,确保论文质量与隐私安全。适用于专科、本科、硕士学生及研究者,满足多语言学术需求。
- 29次使用
-
- PPTFake答辩PPT生成器
- PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
- 40次使用
-
- Lovart
- SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
- 59次使用
-
- 美图AI抠图
- 美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
- 49次使用
-
- PetGPT
- SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
- 52次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览