提高效率的技巧:运用pandas库中常用函数
2024-02-09 10:10:16
0浏览
收藏
学习文章要努力,但是不要急!今天的这篇文章《提高效率的技巧:运用pandas库中常用函数》将会介绍到等等知识点,如果你想深入学习文章,可以关注我!我会持续更新相关文章的,希望对大家都能有所帮助!
Pandas库是Python中用于数据处理和分析的重要工具之一。它提供了丰富的函数和方法来处理数据,但是在大规模数据集上进行操作时,我们也需要注意一些高效应用的技巧。本文将介绍一些常用函数的高效应用技巧,并给出具体的代码示例。
- 数据加载与存储
数据加载和存储是数据分析的第一步。Pandas提供了多种函数来读取和存储各种格式的数据,如CSV、Excel、SQL等。为了提高加载和存储数据的效率,可以使用以下技巧:
# 加载数据时,指定数据类型,减少内存占用 df = pd.read_csv('data.csv', dtype={'column1': 'int32', 'column2': 'float64'}) # 使用.to_csv()方法时,指定压缩格式,减小文件大小 df.to_csv('data.csv.gz', compression='gzip')
- 数据清洗与处理
数据清洗和处理是数据分析的核心步骤。在处理大规模数据时,应尽量避免使用循环迭代,而是使用Pandas库提供的向量化操作。以下是几个常见的高效应用技巧:
# 使用.isin()方法,替代多个“or”条件的筛选操作 df_filtered = df[df['column'].isin(['value1', 'value2', 'value3'])] # 使用.str.contains()方法,替代多个“or”条件的字符串匹配操作 df_match = df[df['column'].str.contains('keyword1|keyword2|keyword3')]
- 数据聚合与分组计算
数据聚合和分组计算是常见的数据处理操作。在大规模数据集上进行聚合计算时,可以使用如下技巧提高效率:
# 使用.groupby()方法,结合聚合函数一次性计算多个指标 df_grouped = df.groupby(['group_col'])['value_col'].agg(['sum', 'mean', 'max']) # 使用transform()方法,一次性计算多个指标,并将结果作为新的一列添加到原数据框中 df['sum_col'] = df.groupby(['group_col'])['value_col'].transform('sum')
- 数据可视化
数据可视化是数据分析和展示的重要环节。在绘制大规模数据图表时,应注意使用高效的可视化函数,以提高绘图效率。
# 使用seaborn库提供的高级绘图函数,如sns.histplot()替代Pandas的.hist()方法 import seaborn as sns sns.histplot(df['column'], kde=True, bins=10)
- 并行计算
在处理大规模数据时,使用并行计算可以充分利用多核处理器的性能,提高数据处理速度。Pandas库中有一些函数支持并行计算,如apply()和map()方法。
import multiprocessing # 定义并行计算函数 def parallel_func(row): # 并行计算逻辑 # 使用multiprocessing库创建并行处理池 with multiprocessing.Pool() as pool: # 使用apply()方法进行并行计算 df['new_column'] = pool.map(parallel_func, df['column'])
综上所述,Pandas库中的常用函数在处理大规模数据时需要注意一些高效应用技巧。通过合理的数据加载与存储、向量化处理、并行计算以及使用高效的可视化函数,可以提高数据处理的效率,快速完成数据分析任务。希望本文所介绍的技巧对读者在实际应用中有所帮助。
今天带大家了解了的相关知识,希望对你有所帮助;关于文章的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~

- 上一篇
- 快速入门pandas库:导入代码教程

- 下一篇
- 编写Java测试类的技巧和最佳实践指南
查看更多
最新文章
-
- 文章 · python教程 | 48分钟前 | 性能优化 数据清洗 Pandas pivot_table 数据透视表
- Python数据透视表的实现方法及技巧
- 127浏览 收藏
-
- 文章 · python教程 | 53分钟前 |
- PythonORM框架使用方法与实用技巧
- 491浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python中@property装饰器的巧妙应用技巧
- 489浏览 收藏
-
- 文章 · python教程 | 1小时前 | 性能 数据处理 可迭代对象 zip() itertools.zip_longest
- Pythonzip()函数使用技巧与示例详解
- 298浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- 字典键可用不可变类型:字符串、数字、元组
- 176浏览 收藏
-
- 文章 · python教程 | 2小时前 | JSON json.loads() try-except ujson orjson
- Python解析JSON响应的详细教程
- 223浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python初学者必备IDE推荐与使用攻略
- 101浏览 收藏
-
- 文章 · python教程 | 6小时前 | 工厂模式 单例模式 类方法 @classmethod 类变量
- Python类方法定义终极攻略
- 477浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
查看更多
AI推荐
-
- 笔灵AI生成答辩PPT
- 探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
- 28次使用
-
- 知网AIGC检测服务系统
- 知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
- 42次使用
-
- AIGC检测-Aibiye
- AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
- 39次使用
-
- 易笔AI论文
- 易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
- 51次使用
-
- 笔启AI论文写作平台
- 笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
- 42次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览