什么是Transformer架构以及它的应用场景?
科技周边不知道大家是否熟悉?今天我将给大家介绍《什么是Transformer架构以及它的应用场景?》,这篇文章主要会讲到等等知识点,如果你在看完本篇文章后,有更好的建议或者发现哪里有问题,希望大家都能积极评论指出,谢谢!希望我们能一起加油进步!
Transformers是一种使用自注意力机制的模型,它采用编码器-解码器架构来实现结果。一些常见的基于Transformer架构的模型包括BERT和RoBERTa。
Transformer架构是专为处理自然语言处理任务中的序列到序列问题而设计的。相对于传统的RNN、LSTM等架构,Transformer的主要优势在于其独特的自注意力机制。这种机制使得Transformer能够准确地捕捉输入句子中标记之间的远程依赖和相关性,并且大大降低了计算时间。通过自注意力机制,Transformer能够对输入序列中的每个位置进行自适应的加权处理,从而更好地捕捉到不同位置的上下文信息。这种机制使得Transformer在处理长距离依赖性时更加有效,从而在许多自然语言处理任务中取得了优异的性能。
这种架构基于编码器-解码器,由多层编码器和解码器组成。每个编码器包含多个子层,包括多头自注意力层和位置全连接前馈神经网络。同样,每个解码器也有两个相同的子层,并添加了一个名为编码解码器注意力层的第三个子层,该层应用于编码器堆栈的输出。
每个子层后面都有一个归一化层,同时每个前馈神经网络周围都有残差连接。这种残差连接提供了梯度和数据流的自由路径,有助于在训练深度神经网络时避免梯度消失的问题。
编码器的注意力向量被传送到前馈神经网络,将其转化为向量表示,并传递至下一个注意层。解码器的任务是将编码器的注意力向量转化为输出数据。在训练阶段,解码器可以使用编码器生成的注意力向量和预期结果。
解码器使用相同的标记化、词嵌入和注意力机制,以处理预期结果并生成注意力向量。随后,该注意力向量与编码器模块中的注意力层进行交互,以建立输入和输出值之间的关联。解码器注意力向量经过前馈层的处理,再映射为目标数据大小的大向量。
终于介绍完啦!小伙伴们,这篇关于《什么是Transformer架构以及它的应用场景?》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布科技周边相关知识,快来关注吧!

- 上一篇
- 中国中车发布全新超级虚拟轨道列车“甬创号”,宁波首次亮相: 速度最高可达77km/h,续航里程超过200公里

- 下一篇
- 超大规模的知识图谱嵌入
-
- 科技周边 · 人工智能 | 2小时前 | Artbreeder 面部调整 基因滑块 参考图像 特征嫁接
- Artbreeder面部调整实用技巧分享
- 374浏览 收藏
-
- 科技周边 · 人工智能 | 3小时前 | AI工具
- Pictory短视频批量教程|AI创作工具使用攻略
- 400浏览 收藏
-
- 科技周边 · 人工智能 | 3小时前 |
- AI视频真实度测评与工具推荐
- 285浏览 收藏
-
- 科技周边 · 人工智能 | 3小时前 | AI大模型 跨平台部署 模型优化 ONNX ONNXRuntime
- ONNX训练AI大模型全解析
- 135浏览 收藏
-
- 科技周边 · 人工智能 | 3小时前 |
- 苹果用户轻松用DeepSeek操作指南
- 476浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 | ai怎么导出图片
- AffinityDesigner导出AI矢量图教程
- 106浏览 收藏
-
- 科技周边 · 人工智能 | 5小时前 |
- AI生成证件照版权谁属?
- 339浏览 收藏
-
- 科技周边 · 人工智能 | 5小时前 |
- AI剪辑结合解说,完整视频教程详解
- 194浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 499次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- PandaWiki开源知识库
- PandaWiki是一款AI大模型驱动的开源知识库搭建系统,助您快速构建产品/技术文档、FAQ、博客。提供AI创作、问答、搜索能力,支持富文本编辑、多格式导出,并可轻松集成与多来源内容导入。
- 128次使用
-
- AI Mermaid流程图
- SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
- 925次使用
-
- 搜获客【笔记生成器】
- 搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
- 946次使用
-
- iTerms
- iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
- 960次使用
-
- TokenPony
- TokenPony是讯盟科技旗下的AI大模型聚合API平台。通过统一接口接入DeepSeek、Kimi、Qwen等主流模型,支持1024K超长上下文,实现零配置、免部署、极速响应与高性价比的AI应用开发,助力专业用户轻松构建智能服务。
- 1029次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览