套索回归特征选择方法的应用与示例
从现在开始,努力学习吧!本文《套索回归特征选择方法的应用与示例》主要讲解了等等相关知识点,我会在golang学习网中持续更新相关的系列文章,欢迎大家关注并积极留言建议。下面就先一起来看一下本篇正文内容吧,希望能帮到你!
套索回归是一种用于特征选择的线性回归模型。它通过在损失函数中添加一个L1正则化项,可以将某些特征的系数设为0,从而实现特征选择的目的。在下文中,我将详细介绍套索回归的方法,并提供一个示例和相应的Python代码。
套索回归的方法
套索回归的损失函数为:
L(\beta)=\frac{1}{2n}\sum_{i=1}^{n}(y_{i}-\sum_{j=1}^{p}x_{ij}\beta_{j})^{2}+\lambda\sum_{j=1}^{p}|\beta_{j}|
在线性回归中,有一个重要概念是正则化。其中,n表示样本数,p表示特征数,y_{i}表示第i个样本的标签,x_{ij}表示第i个样本的第j个特征值,\beta_{j}表示第j个特征的系数,\lambda表示正则化强度。 正则化的目的是为了防止过拟合,通过惩罚模型中的特征系数来控制模型的复杂度。在正则化中,\lambda的取值越大,模型对特征的惩罚就越强。这样会导致一些特征的系数变为0,从而减少模型中的特征数量。 通过正则化,我们可以选择保留对预测结果最有影响力的特征,同时减少不必要的特征。这样可以简化模型,并提高模型的泛化能力。因此,在选择正则化
套索回归的优化目标是:
\hat{\beta}=argmin_{\beta}\frac{1}{2n}\sum_{i=1}^{n}(y_{i}-\sum_{j=1}^{p}x_{ij}\beta_{j})^{2}+\lambda\sum_{j=1}^{p}|\beta_{j}|
套索回归的求解方法可以采用坐标下降法或者最小角回归法。坐标下降法是一种迭代优化方法,每次只优化一个系数,其他系数保持不变,直到收敛。最小角回归法是一种直接求解方法,通过同时优化所有系数来得到最终的模型。
套索回归的示例和代码
下面我们使用一个实际数据集来演示套索回归的特征选择效果。我们使用sklearn中的diabetes数据集,该数据集包含442个糖尿病患者的10个特征和一个响应变量,我们的目标是使用套索回归来选择最重要的特征。
# 导入数据集和相关库 from sklearn.datasets import load_diabetes from sklearn.linear_model import Lasso import numpy as np import matplotlib.pyplot as plt # 加载糖尿病数据集 diabetes = load_diabetes() # 将数据集分成训练集和测试集 X_train = diabetes.data[:300] y_train = diabetes.target[:300] X_test = diabetes.data[300:] y_test = diabetes.target[300:] # 套索回归模型 lasso = Lasso(alpha=0.1) lasso.fit(X_train, y_train) # 打印每个特征的系数 print("lasso.coef_:", lasso.coef_) # 绘制每个特征的系数 plt.plot(range(diabetes.data.shape[1]), lasso.coef_) plt.xticks(range(diabetes.data.shape[1]), diabetes.feature_names, rotation=60) plt.ylabel("Coefficients") plt.show()
运行上面的代码,我们可以得到每个特征的系数以及绘制的系数图。结果显示,套索回归将除了第二个特征外的所有特征的系数都压缩到了0,这表明这些特征对模型的贡献很小,可以被剔除。另外,第二个特征的系数比其他特征的系数更大,这表明它是最重要的特征。
套索回归是一种非常有效的特征选择方法,它可以通过调整正则化强度来控制特征的数量和质量。在实际应用中,我们可以使用交叉验证来选择最佳的正则化强度,以达到更好的模型性能和特征选择效果。
到这里,我们也就讲完了《套索回归特征选择方法的应用与示例》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于机器学习,线性回归的知识点!
-
- 科技周边 · 人工智能 | 54分钟前 |
- 余承东揭晓智界升级,1999元超值方案
- 429浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 现代起亚与印度理工合作电动车电池技术大突破
- 331浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 笔灵AI生成答辩PPT
- 探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
- 20次使用
-
- 知网AIGC检测服务系统
- 知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
- 29次使用
-
- AIGC检测-Aibiye
- AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
- 35次使用
-
- 易笔AI论文
- 易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
- 44次使用
-
- 笔启AI论文写作平台
- 笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
- 37次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览