使用实例演示线性回归预测连续变量的方法
各位小伙伴们,大家好呀!看看今天我又给各位带来了什么文章?本文标题是《使用实例演示线性回归预测连续变量的方法》,很明显是关于科技周边的文章哈哈哈,其中内容主要会涉及到等等,如果能帮到你,觉得很不错的话,欢迎各位多多点评和分享!
线性回归是一种常用的机器学习算法,用于预测一个连续变量与一个或多个自变量之间的线性关系。本文将介绍线性回归的工作原理,并通过一个实例和Python代码演示预测的过程。
一、线性回归的工作原理
线性回归是一种监督学习算法,通过一组自变量(或特征)来预测一个连续变量的值。在简单线性回归中,只有一个自变量预测因变量的值;而在多元线性回归中,有多个自变量预测因变量的值。这种算法可以用于预测房价、销售额等连续变量的数值。通过找到最佳拟合线,线性回归可以提供对因变量的预测和解释。
线性回归的基本思想是通过找到一条最佳拟合直线,使得预测值与实际值之间的误差最小化。该直线可用y=mx+b的形式表示,其中y表示因变量,x表示自变量,m表示斜率,b表示截距。
为了寻找最佳拟合直线,我们使用最小二乘法。该方法的核心思想是找到一条直线,使得所有数据点到该直线的距离之和最小化。
二、线性回归的例子
现在我们来看一个例子,假设我们有一组数据,表示某个城市的房屋面积和价格。我们想要使用线性回归来预测一个房屋面积的价格。我们可以将房屋面积作为自变量x,将价格作为因变量y。

首先,我们需要导入必要的库和数据:
import numpy as np import matplotlib.pyplot as plt # 数据 x = np.array([70, 80, 100, 120, 150, 180, 200]) y = np.array([320, 360, 420, 480, 600, 720, 800])
接下来,我们可以绘制出数据的散点图:
plt.scatter(x, y) plt.xlabel('房屋面积(平方米)') plt.ylabel('价格(万元)') plt.show()
从散点图中可以看出,房屋面积和价格之间存在一定的线性关系。现在我们可以使用线性回归来拟合数据,并预测一个新房屋面积的价格。
from sklearn.linear_model import LinearRegression # 创建线性回归模型 model = LinearRegression() # 训练模型 model.fit(x.reshape(-1, 1), y) # 预测房屋面积为120平方米的价格 new_x = np.array([120]) predicted_y = model.predict(new_x.reshape(-1, 1)) print(predicted_y) # 输出 [452.85714286]
我们使用Scikit-learn库中的LinearRegression模型来创建线性回归模型,并使用训练数据进行训练。然后,我们使用模型来预测一个新房屋面积为120平方米的价格,得到预测结果为452,857元。
最后,我们可以绘制出拟合直线和预测结果:
# 绘制拟合直线 line_x = np.linspace(50, 220, 100) line_y = model.predict(line_x.reshape(-1, 1)) plt.plot(line_x, line_y, color='r') #绘制预测结果 plt.scatter(new_x, predicted_y, color='g') # 绘制原始数据 plt.scatter(x, y) # 添加标签和标题 plt.xlabel('房屋面积(平方米)') plt.ylabel('价格(万元)') plt.title('房屋面积与价格的线性关系') plt.show()
从上图可以看出,拟合直线很好地拟合了数据,并且预测结果也比较准确。
三、总结
本文介绍了线性回归的工作原理,并通过一个实际的例子演示了如何使用Python进行线性回归预测。线性回归是一种简单但有效的机器学习算法,可以用于解决许多实际问题,如房价预测、销售预测等。在实际应用中,我们需要根据具体问题选择合适的特征和模型,并进行数据预处理和模型优化,以获得更好的预测效果。
文中关于机器学习,算法的概念的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《使用实例演示线性回归预测连续变量的方法》文章吧,也可关注golang学习网公众号了解相关技术文章。

- 上一篇
- 了解交叉熵算法及其最小化

- 下一篇
- 网易伏羲推出智能升级测试版,推动产业智能化与人机协作
-
- 科技周边 · 人工智能 | 4分钟前 |
- 豆包AI速成班!三步打造爆款职场九宫格
- 148浏览 收藏
-
- 科技周边 · 人工智能 | 7分钟前 |
- 剪映搭配DeepSeek,短视频制作全攻略
- 361浏览 收藏
-
- 科技周边 · 人工智能 | 7分钟前 |
- Deepseek满血版配SlidesAI,轻松做专业PPT
- 321浏览 收藏
-
- 科技周边 · 人工智能 | 11分钟前 |
- 国际油价上涨,国内油价或涨260元/吨
- 455浏览 收藏
-
- 科技周边 · 人工智能 | 18分钟前 |
- 豆包AI编程技巧与实战解析
- 423浏览 收藏
-
- 科技周边 · 人工智能 | 23分钟前 |
- AI+豆包处理数据教程详解
- 459浏览 收藏
-
- 科技周边 · 人工智能 | 27分钟前 |
- ChatGPT收费模式及版本对比全解析
- 441浏览 收藏
-
- 科技周边 · 人工智能 | 29分钟前 |
- Diffusers图像生成教程:扩散模型推理详解
- 144浏览 收藏
-
- 科技周边 · 人工智能 | 31分钟前 |
- 豆包DeepSeek:写作润色最佳搭档
- 199浏览 收藏
-
- 科技周边 · 人工智能 | 37分钟前 |
- 豆包AI如何高效处理Python数据转换?
- 247浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 509次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 边界AI平台
- 探索AI边界平台,领先的智能AI对话、写作与画图生成工具。高效便捷,满足多样化需求。立即体验!
- 18次使用
-
- 免费AI认证证书
- 科大讯飞AI大学堂推出免费大模型工程师认证,助力您掌握AI技能,提升职场竞争力。体系化学习,实战项目,权威认证,助您成为企业级大模型应用人才。
- 44次使用
-
- 茅茅虫AIGC检测
- 茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
- 167次使用
-
- 赛林匹克平台(Challympics)
- 探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
- 243次使用
-
- 笔格AIPPT
- SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
- 186次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览