使用实例演示线性回归预测连续变量的方法
各位小伙伴们,大家好呀!看看今天我又给各位带来了什么文章?本文标题是《使用实例演示线性回归预测连续变量的方法》,很明显是关于科技周边的文章哈哈哈,其中内容主要会涉及到等等,如果能帮到你,觉得很不错的话,欢迎各位多多点评和分享!
线性回归是一种常用的机器学习算法,用于预测一个连续变量与一个或多个自变量之间的线性关系。本文将介绍线性回归的工作原理,并通过一个实例和Python代码演示预测的过程。
一、线性回归的工作原理
线性回归是一种监督学习算法,通过一组自变量(或特征)来预测一个连续变量的值。在简单线性回归中,只有一个自变量预测因变量的值;而在多元线性回归中,有多个自变量预测因变量的值。这种算法可以用于预测房价、销售额等连续变量的数值。通过找到最佳拟合线,线性回归可以提供对因变量的预测和解释。
线性回归的基本思想是通过找到一条最佳拟合直线,使得预测值与实际值之间的误差最小化。该直线可用y=mx+b的形式表示,其中y表示因变量,x表示自变量,m表示斜率,b表示截距。
为了寻找最佳拟合直线,我们使用最小二乘法。该方法的核心思想是找到一条直线,使得所有数据点到该直线的距离之和最小化。
二、线性回归的例子
现在我们来看一个例子,假设我们有一组数据,表示某个城市的房屋面积和价格。我们想要使用线性回归来预测一个房屋面积的价格。我们可以将房屋面积作为自变量x,将价格作为因变量y。

首先,我们需要导入必要的库和数据:
import numpy as np import matplotlib.pyplot as plt # 数据 x = np.array([70, 80, 100, 120, 150, 180, 200]) y = np.array([320, 360, 420, 480, 600, 720, 800])
接下来,我们可以绘制出数据的散点图:
plt.scatter(x, y) plt.xlabel('房屋面积(平方米)') plt.ylabel('价格(万元)') plt.show()
从散点图中可以看出,房屋面积和价格之间存在一定的线性关系。现在我们可以使用线性回归来拟合数据,并预测一个新房屋面积的价格。
from sklearn.linear_model import LinearRegression # 创建线性回归模型 model = LinearRegression() # 训练模型 model.fit(x.reshape(-1, 1), y) # 预测房屋面积为120平方米的价格 new_x = np.array([120]) predicted_y = model.predict(new_x.reshape(-1, 1)) print(predicted_y) # 输出 [452.85714286]
我们使用Scikit-learn库中的LinearRegression模型来创建线性回归模型,并使用训练数据进行训练。然后,我们使用模型来预测一个新房屋面积为120平方米的价格,得到预测结果为452,857元。
最后,我们可以绘制出拟合直线和预测结果:
# 绘制拟合直线 line_x = np.linspace(50, 220, 100) line_y = model.predict(line_x.reshape(-1, 1)) plt.plot(line_x, line_y, color='r') #绘制预测结果 plt.scatter(new_x, predicted_y, color='g') # 绘制原始数据 plt.scatter(x, y) # 添加标签和标题 plt.xlabel('房屋面积(平方米)') plt.ylabel('价格(万元)') plt.title('房屋面积与价格的线性关系') plt.show()
从上图可以看出,拟合直线很好地拟合了数据,并且预测结果也比较准确。
三、总结
本文介绍了线性回归的工作原理,并通过一个实际的例子演示了如何使用Python进行线性回归预测。线性回归是一种简单但有效的机器学习算法,可以用于解决许多实际问题,如房价预测、销售预测等。在实际应用中,我们需要根据具体问题选择合适的特征和模型,并进行数据预处理和模型优化,以获得更好的预测效果。
文中关于机器学习,算法的概念的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《使用实例演示线性回归预测连续变量的方法》文章吧,也可关注golang学习网公众号了解相关技术文章。

- 上一篇
- 了解交叉熵算法及其最小化

- 下一篇
- 网易伏羲推出智能升级测试版,推动产业智能化与人机协作
-
- 科技周边 · 人工智能 | 2小时前 |
- DeepSeek与OneNote联手,手写识别更高效
- 219浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- 豆包AI新手必学!三步制霸职场吐槽图,流量暴涨300%
- 215浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- 豆包AI新手必学!三步职场吐槽涨粉300%
- 275浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- 即梦ai手机导出教程移动端适配设置攻略
- 335浏览 收藏
-
- 科技周边 · 人工智能 | 5小时前 |
- IBM推出Granite4.0TinyPreview语言模型
- 230浏览 收藏
-
- 科技周边 · 人工智能 | 5小时前 |
- 通灵义码操作技巧,提升便捷与效率
- 189浏览 收藏
-
- 科技周边 · 人工智能 | 5小时前 |
- 文心一言文案优化绝技大揭秘
- 399浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 魔匠AI
- SEO摘要魔匠AI专注于高质量AI学术写作,已稳定运行6年。提供无限改稿、选题优化、大纲生成、多语言支持、真实参考文献、数据图表生成、查重降重等全流程服务,确保论文质量与隐私安全。适用于专科、本科、硕士学生及研究者,满足多语言学术需求。
- 19次使用
-
- PPTFake答辩PPT生成器
- PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
- 36次使用
-
- Lovart
- SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
- 37次使用
-
- 美图AI抠图
- 美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
- 44次使用
-
- PetGPT
- SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
- 44次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览