当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > KNN算法的分类原理、步骤及示例

KNN算法的分类原理、步骤及示例

来源:网易伏羲 2024-01-31 23:34:33 0浏览 收藏

在科技周边实战开发的过程中,我们经常会遇到一些这样那样的问题,然后要卡好半天,等问题解决了才发现原来一些细节知识点还是没有掌握好。今天golang学习网就整理分享《KNN算法的分类原理、步骤及示例》,聊聊,希望可以帮助到正在努力赚钱的你。

KNN算法分类原理和步骤(KNN算法分类实例)

KNN算法是一种简单易用的分类算法,适用于小规模数据集和低维特征空间。它在图像分类、文本分类等领域中表现出色,因其实现简单、易于理解而备受青睐。

KNN算法的基本思想是通过比较待分类样本的特征与训练样本的特征,找到最接近的K个邻居,并根据这K个邻居的类别确定待分类样本的类别。KNN算法中使用已标记好类别的训练集和待分类的测试集。KNN算法的分类过程包括以下几个步骤:首先,计算待分类样本与所有训练样本之间的距离;其次,选择距离最近的K个邻居;然后,根据K个邻居的类别进行投票,得出待分类样本的类别;最后,将待分类样本的类别确定为投票结果中得票最多的类别。通过这些步骤,KNN算法可以对待分类样本进行准确的分类。

1.计算距离

对于未分类的测试样本,需计算其与训练集所有样本的距离,常用欧式、曼哈顿等方法。

2.选择K个邻居

根据计算出来的距离,选择与待分类样本距离最近的K个训练集样本。这些样本就是待分类样本的K个邻居。

3.确定类别

根据K个邻居的类别来确定待分类样本的类别。通常采用“多数表决法”来确定待分类样本的类别,即选择K个邻居中出现最多的类别作为待分类样本的类别。

KNN算法相对简单,但也有一些需要注意的问题。首先,K值的选择对算法的性能有很大的影响,通常需要通过交叉验证等方法来确定最优的K值。其次,KNN算法对数据集的规模和维度敏感,对于大规模和高维数据集的处理会出现效率问题。此外,KNN算法还存在“类别不平衡”的问题,即某些类别的样本数量较少,可能导致算法对这些类别的分类效果较差。

以下是一个使用Python实现KNN算法的分类实例,代码如下:

import numpy as np
from collections import Counter

class KNN:
    def __init__(self, k):
        self.k = k

    def fit(self, X, y):
        self.X_train = X
        self.y_train = y

    def predict(self, X_test):
        predictions = []

        for x_test in X_test:
            distances = []
            for x_train in self.X_train:
                distance = np.sqrt(np.sum((x_test - x_train)**2))
                distances.append(distance)
            idx = np.argsort(distances)[:self.k]
            k_nearest_labels = [self.y_train[i] for i in idx]
            most_common = Counter(k_nearest_labels).most_common(1)
            predictions.append(most_common[0][0])

        return np.array(predictions)

这个KNN类的构造函数中传入参数k表示选择多少个邻居来进行分类。fit方法用于训练模型,接受一个训练集X和它们对应的标签y。predict方法用于对测试集进行分类,接受一个测试集X_test,返回预测的标签。

在predict方法中,对于每个测试样本,首先计算它与训练集中所有样本的距离,并选择距离最近的k个样本。然后,统计这k个样本中出现最频繁的标签,并作为测试样本的分类标签。

下面是一个使用这个KNN类进行分类的例子,数据集为一个二维平面上的点集,其中红色点表示类别1,蓝色点表示类别2:

import matplotlib.pyplot as plt

# 生成数据集
X = np.random.rand(200, 2) * 5 - 2.5
y = np.zeros(200)
y[np.sum(X**2, axis=1) > 2] = 1

# 分割训练集和测试集
train_idx = np.random.choice(200, 150, replace=False)
test_idx = np.array(list(set(range(200)) - set(train_idx)))
X_train, y_train = X[train_idx], y[train_idx]
X_test, y_test = X[test_idx], y[test_idx]

# 训练模型并进行预测
knn = KNN(k=5)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)

# 计算准确率并绘制分类结果
accuracy = np.mean(y_pred == y_test)
print("Accuracy:", accuracy)

plt.scatter(X_test[:, 0], X_test[:, 1], c=y_pred)
plt.show()

运行这段代码后,可以看到分类结果图像。其中,颜色表示预测的类别,红色表示类别1,蓝色表示类别2。根据分类结果,可以计算出模型的准确率。

这个实例展示了KNN算法在二维平面上的应用,通过计算距离来确定邻居,并根据邻居的类别来进行分类。在实际应用中,KNN算法可以用于图像分类、文本分类等领域,是一种简单而有效的分类算法。

本篇关于《KNN算法的分类原理、步骤及示例》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于科技周边的相关知识,请关注golang学习网公众号!

版本声明
本文转载于:网易伏羲 如有侵犯,请联系study_golang@163.com删除
池化与扁平化在卷积神经网络中的作用和定义池化与扁平化在卷积神经网络中的作用和定义
上一篇
池化与扁平化在卷积神经网络中的作用和定义
深入解析特征提取方法 展示特征提取方案案例
下一篇
深入解析特征提取方法 展示特征提取方案案例
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    16次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    24次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    30次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    42次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    35次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码