KNN算法的分类原理、步骤及示例
在科技周边实战开发的过程中,我们经常会遇到一些这样那样的问题,然后要卡好半天,等问题解决了才发现原来一些细节知识点还是没有掌握好。今天golang学习网就整理分享《KNN算法的分类原理、步骤及示例》,聊聊,希望可以帮助到正在努力赚钱的你。

KNN算法是一种简单易用的分类算法,适用于小规模数据集和低维特征空间。它在图像分类、文本分类等领域中表现出色,因其实现简单、易于理解而备受青睐。
KNN算法的基本思想是通过比较待分类样本的特征与训练样本的特征,找到最接近的K个邻居,并根据这K个邻居的类别确定待分类样本的类别。KNN算法中使用已标记好类别的训练集和待分类的测试集。KNN算法的分类过程包括以下几个步骤:首先,计算待分类样本与所有训练样本之间的距离;其次,选择距离最近的K个邻居;然后,根据K个邻居的类别进行投票,得出待分类样本的类别;最后,将待分类样本的类别确定为投票结果中得票最多的类别。通过这些步骤,KNN算法可以对待分类样本进行准确的分类。
1.计算距离
对于未分类的测试样本,需计算其与训练集所有样本的距离,常用欧式、曼哈顿等方法。
2.选择K个邻居
根据计算出来的距离,选择与待分类样本距离最近的K个训练集样本。这些样本就是待分类样本的K个邻居。
3.确定类别
根据K个邻居的类别来确定待分类样本的类别。通常采用“多数表决法”来确定待分类样本的类别,即选择K个邻居中出现最多的类别作为待分类样本的类别。
KNN算法相对简单,但也有一些需要注意的问题。首先,K值的选择对算法的性能有很大的影响,通常需要通过交叉验证等方法来确定最优的K值。其次,KNN算法对数据集的规模和维度敏感,对于大规模和高维数据集的处理会出现效率问题。此外,KNN算法还存在“类别不平衡”的问题,即某些类别的样本数量较少,可能导致算法对这些类别的分类效果较差。
以下是一个使用Python实现KNN算法的分类实例,代码如下:
import numpy as np
from collections import Counter
class KNN:
def __init__(self, k):
self.k = k
def fit(self, X, y):
self.X_train = X
self.y_train = y
def predict(self, X_test):
predictions = []
for x_test in X_test:
distances = []
for x_train in self.X_train:
distance = np.sqrt(np.sum((x_test - x_train)**2))
distances.append(distance)
idx = np.argsort(distances)[:self.k]
k_nearest_labels = [self.y_train[i] for i in idx]
most_common = Counter(k_nearest_labels).most_common(1)
predictions.append(most_common[0][0])
return np.array(predictions)这个KNN类的构造函数中传入参数k表示选择多少个邻居来进行分类。fit方法用于训练模型,接受一个训练集X和它们对应的标签y。predict方法用于对测试集进行分类,接受一个测试集X_test,返回预测的标签。
在predict方法中,对于每个测试样本,首先计算它与训练集中所有样本的距离,并选择距离最近的k个样本。然后,统计这k个样本中出现最频繁的标签,并作为测试样本的分类标签。
下面是一个使用这个KNN类进行分类的例子,数据集为一个二维平面上的点集,其中红色点表示类别1,蓝色点表示类别2:
import matplotlib.pyplot as plt
# 生成数据集
X = np.random.rand(200, 2) * 5 - 2.5
y = np.zeros(200)
y[np.sum(X**2, axis=1) > 2] = 1
# 分割训练集和测试集
train_idx = np.random.choice(200, 150, replace=False)
test_idx = np.array(list(set(range(200)) - set(train_idx)))
X_train, y_train = X[train_idx], y[train_idx]
X_test, y_test = X[test_idx], y[test_idx]
# 训练模型并进行预测
knn = KNN(k=5)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
# 计算准确率并绘制分类结果
accuracy = np.mean(y_pred == y_test)
print("Accuracy:", accuracy)
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_pred)
plt.show()运行这段代码后,可以看到分类结果图像。其中,颜色表示预测的类别,红色表示类别1,蓝色表示类别2。根据分类结果,可以计算出模型的准确率。
这个实例展示了KNN算法在二维平面上的应用,通过计算距离来确定邻居,并根据邻居的类别来进行分类。在实际应用中,KNN算法可以用于图像分类、文本分类等领域,是一种简单而有效的分类算法。
本篇关于《KNN算法的分类原理、步骤及示例》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于科技周边的相关知识,请关注golang学习网公众号!
池化与扁平化在卷积神经网络中的作用和定义
- 上一篇
- 池化与扁平化在卷积神经网络中的作用和定义
- 下一篇
- 深入解析特征提取方法 展示特征提取方案案例
-
- 科技周边 · 人工智能 | 59分钟前 |
- 爆款AI视频生成器免费入口推荐
- 117浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- Kling物理模拟教程:真实交互设置详解
- 477浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- Deepseek满血版与AIPRM对话优化对比
- 217浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- AIOverviews生成教程与实用技巧
- 458浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- ChatGPT国内注册方法及最新流程详解
- 246浏览 收藏
-
- 科技周边 · 人工智能 | 3小时前 |
- 豆包网页版入口与使用教程
- 329浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- 文心一言对话生成器官网入口
- 395浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3211次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3425次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3454次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4563次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3832次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览

