当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 探究自动编码器训练的基本架构

探究自动编码器训练的基本架构

来源:网易伏羲 2024-01-27 18:27:49 0浏览 收藏

一分耕耘,一分收获!既然打开了这篇文章《探究自动编码器训练的基本架构》,就坚持看下去吧!文中内容包含等等知识点...希望你能在阅读本文后,能真真实实学到知识或者帮你解决心中的疑惑,也欢迎大佬或者新人朋友们多留言评论,多给建议!谢谢!

噪声数据是机器学习中常见的问题之一,自动编码器是解决这类问题的有效方法。本文将介绍自动编码器的结构和正确训练方法。

自动编码器是一种无监督学习的人工神经网络,用于学习数据的编码。其目标是通过训练网络来捕捉输入图像的关键特征,并将其转化为低维表示,常用于降维处理。

自动编码器的架构

自动编码器由3部分组成:

1.编码器:将训练-验证-测试集输入数据压缩成编码表示的模块,通常比输入数据小几个数量级。

2.瓶颈:包含压缩知识表示的模块,因此是网络中最重要的部分。

3.解码器:帮助网络“解压缩”知识表示并从其编码形式重构数据的模块。然后将输出与地面实况进行比较。

整个架构看起来像这样,如下图:

从自动编码器的架构开始了解如何训练自动编码器

编码器、瓶颈和解码器之间的关系

编码器

编码器是一组卷积块,后面是池化模块,将模型的输入压缩到称为瓶颈的紧凑部分。

瓶颈之后是解码器,它由一系列上采样模块组成,用于将压缩后的特征恢复为图像形式。在简单的自动编码器的情况下,输出预计与噪声降低的输入相同。

然而,对于变分自动编码器,它是一个全新的图像,由模型作为输入提供的信息形成。

瓶颈

作为神经网络中最重要的部分,会限制信息从编码器流向解码器,只允许最重要的信息通过。

由于瓶颈的设计是为了捕获图像所拥有的特征信息,我们可以说瓶颈帮助形成输入的知识表示。编码器-解码器结构帮助我们以数据的形式从图像中提取更多信息,并为网络中的各种输入之间建立有用的相关性。

作为输入的压缩表示的瓶颈会进一步防止神经网络记忆输入和对数据的过度拟合。瓶颈越小,过度拟合的风险就越低。但非常小的瓶颈会限制可存储的信息量,这会增加重要信息从编码器的池化层中漏出的机会。

解码器

最后,解码器是一组上采样和卷积块,用于重建瓶颈的输出。

由于解码器的输入是压缩的知识表示,因此解码器充当“解压缩器”并从其潜在属性重建图像。

了解完自动编码器的结果和关系后,我们接着来看如何正确训练自动编码器。

如何训练自动编码器?

在训练自动编码器之前需要设置4个超参数:

1.代码大小

代码大小或瓶颈大小是用于调整自动编码器的最重要的超参数。瓶颈大小决定了必须压缩多少数据。这也可以作为正则化项。

2.层数

与所有神经网络一样,调整自动编码器的一个重要超参数是编码器和解码器的深度。虽然较高的深度会增加模型的复杂性,但较低的深度处理速度更快。

3.每层节点数

每层节点数定义了我们每层使用的权重。通常,节点的数量随着自动编码器中每个后续层的减少而减少,因为这些层中的每一个的输入在层中变得更小。

4.重建损失

我们用来训练自动编码器的损失函数高度依赖于我们希望自动编码器适应的输入和输出类型。如果我们处理图像数据,最流行的重建损失函数是MSE损失函数和L1损失函数。如果输入和输出在[0,1]范围内,就像在MNIST数据集中一样,我们也可以使用二元交叉熵作为重建损失。

理论要掌握,实操不能落!以上关于《探究自动编码器训练的基本架构》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!

版本声明
本文转载于:网易伏羲 如有侵犯,请联系study_golang@163.com删除
混淆矩阵中的度量指标:精确度、召回率、准确度和 F-Measure混淆矩阵中的度量指标:精确度、召回率、准确度和 F-Measure
上一篇
混淆矩阵中的度量指标:精确度、召回率、准确度和 F-Measure
强化学习的定义和应用实例场景说明
下一篇
强化学习的定义和应用实例场景说明
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    24次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    38次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    37次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    48次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    41次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码