当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 深入解析机器学习中的降维技术:理解降维的概念及其作用

深入解析机器学习中的降维技术:理解降维的概念及其作用

来源:网易伏羲 2024-01-31 19:31:38 0浏览 收藏

你在学习科技周边相关的知识吗?本文《深入解析机器学习中的降维技术:理解降维的概念及其作用》,主要介绍的内容就涉及到,如果你想提升自己的开发能力,就不要错过这篇文章,大家要知道编程理论基础和实战操作都是不可或缺的哦!

什么是降维?机器学习中的降维概念详解

降维是一种通过优化机器学习模型的训练数据输入变量来减少模型训练成本的技术。在高维数据中,输入变量的数量可能非常庞大,降维的目的是尽可能地保留原始数据的可变性。通过降维,我们可以减少模型训练所需的计算资源,并在一定程度上提高模型的准确性。

在机器学习中,对于较少输入变量或低维度的数据,可以使用结构更简单、参数更少的机器学习模型进行处理。特别是在神经网络中,通过使用简单模型来降低数据的维数,可以实现很好的泛化效果,从而使模型更加可取。

降维的重要性

  1. 高维数据执行学习训练具有非常高的计算成本。而且通过高维数据训练的模型往往在训练数据上表现得相当好,但在测试时表现不佳。
  2. 降维消除了数据中不相关的特征或变量,可以帮助模型预测避免维度诅咒,同时还能保留数据中的相关特征,提高准确性。
  3. 减少数据的维度也使数据可视化更容易,节省训练时间和存储空间。
  4. 降维还可以通过消除多重共线性来帮助增强对机器学习模型参数的解释。
  5. 可以应用降维来缓解过拟合问题
  6. 降维可用于因子分析
  7. 降维可用于图像压缩
  8. 降维可将非线性数据转换为线性可分形式
  9. 降维可用于压缩神经网络架构

降维的组成部分

特征选择

这涉及尝试识别原始特征的子集,以尝试找到可以用来对问题进行建模的较小子集。

特征选择类型

  • 递归特征消除

递归特征消除(RFE)方法的核心是不同机器学习算法本质上是RFE包装的,用于帮助选择特征。

从技术上讲,它是一种包装类型的特征选择算法,它在内部也使用了基于过滤器的特征选择。它的工作原理是从训练数据集中的特征开始寻找特征的子集,然后消除特征直到保留所需的数量。

  • 遗传特征选择

遗传算法(GA)的灵感来自达尔文的自然选择理论,在该理论中,只有最适合的个体才能得到保存,模仿自然选择的力量来找到函数的最佳值。

由于变量在组中起作用,因此对于遗传算法,所选变量被视为一个整体。该算法不会针对目标单独对变量进行排名。

  • 顺序前向选择

在顺序前向选择中,首先选择最好的单个特征。之后,它通过剩余特征之一与最佳特征形成特征对,再然后选择最佳对。接下来会看到使用这对最佳特征以及剩余特征之一形成的三重特征。这可以一直持续到选择了预定义数量的特征。

特征提取

特征提取涉及将原始原始数据集减少为可管理的组以进行处理。它最常使用文本和图像数据进行,提取和处理最重要的特征,而不是处理整个数据集。

降维的方法

主成分分析(PCA)

这是一种线性降维技术,它将一组相关特征“p”转换为较少数量的不相关特征“k”(k<p)。这些较少的不相关变量被称为主成分。该方法尽可能多地保留原始数据集的变化。它是一种无监督机器学习算法。

线性判别分析(LDA)

这种技术按类别将训练实例分开。它识别输入变量的线性组合,从而优化类可分离性。它是一种有监督的机器学习算法。

广义判别分析(GDA)

此方法使用一个函数核心操作员。它将输入向量映射到高维特征空间。该方法旨在通过最大化类间散度与类内散度的比率来找到变量到低维空间的投影。

还有其他的降维方法,如t分布随机邻域嵌入(t-SNE)、因子分析(FA)、截断奇异值分解(SVD)、多维缩放(MDS)、等距映射(Isomap)、后向消除、前向选择等。

降维是可逆的吗?

降维在自动编码器中是可逆的。这些本质上是常规的神经网络,中间有一个瓶颈层。例如,第一层可以有20个输入,中间层有10个神经元,最后一层有另外20个神经元。在训练这样一个网络时,基本上强制它把信息压缩到10个神经元,然后再解压缩,从而最大限度地减少最后一层的错误。

以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于科技周边的相关知识,也可关注golang学习网公众号。

版本声明
本文转载于:网易伏羲 如有侵犯,请联系study_golang@163.com删除
简单的面部识别:基于面部标志和K最近邻算法简单的面部识别:基于面部标志和K最近邻算法
上一篇
简单的面部识别:基于面部标志和K最近邻算法
深度聚类的综合算法分析
下一篇
深度聚类的综合算法分析
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3179次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3390次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3419次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4525次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3799次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码