当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 无监督学习:揭示数据中的潜在结构与模式

无监督学习:揭示数据中的潜在结构与模式

来源:网易伏羲 2024-02-02 20:18:00 0浏览 收藏

大家好,我们又见面了啊~本文《无监督学习:揭示数据中的潜在结构与模式》的内容中将会涉及到等等。如果你正在学习科技周边相关知识,欢迎关注我,以后会给大家带来更多科技周边相关文章,希望我们能一起进步!下面就开始本文的正式内容~

无监督学习:发现数据中的潜在结构和模式

无监督学习是一种机器学习方法,通过分析无标签的数据来寻找隐藏的结构和模式。与监督学习不同,无监督学习不依赖预定义的输出标签。因此,它可以用于发现数据中的隐藏结构、降维、特征提取和聚类等任务。无监督学习为数据分析提供了一种强大的工具,可以帮助我们理解数据并发现其中的规律和模式。

无监督学习包括多种方法,下面分别介绍其原理和算法:

1、聚类

聚类是无监督学习中常用的方法之一,目标是将数据集中的对象分成若干组,使组内对象相似度高,组间相似度低。常见算法有K-Means、层次聚类、DBSCAN等。

K-Means算法的原理是将数据集划分为K个簇,每个簇由一个质心代表。算法的步骤包括初始化质心、计算每个数据点与质心的距离、将数据点归入距离最近的簇、重新计算簇的质心、重复前面的步骤直到收敛。K-Means算法的优点是计算速度快,但其结果可能会受到初始质心的影响。该算法的核心思想是通过最小化簇内数据点与质心之间的距离来使簇内数据点相似度最高,簇间数据点相似度最低。这样的划分可以用于数据聚类、图像分割等应用领域。然而,K-Means算法对于异常值和噪声敏感,且需要事先确定簇的个数K。为了克服这些问题,可以采用改进的K-Means算法,如K-Means++、Mini-Batch K

2、降维

降维是无监督学习中的另一个重要任务,其目的是将高维数据转化为低维数据,以便于可视化、计算等任务。常见的降维算法有主成分分析(PCA)、t-SNE、LLE等。

PCA算法的原理是将数据集中的变量通过线性变换,转化为一组新的不相关的变量,这些新变量被称为主成分。PCA的步骤包括计算数据集的协方差矩阵、计算协方差矩阵的特征向量和特征值、选取前K个最大特征值对应的特征向量、将数据集通过这K个特征向量进行投影。PCA算法的优点是可以减少数据集中的冗余信息,但其结果可能会受到数据集中噪声的影响。

3、异常检测

异常检测是无监督学习中的一种任务,其目的是检测数据集中的异常点或离群点。常见的异常检测算法有基于统计模型的方法、基于聚类的方法、基于密度的方法等。

基于统计模型的异常检测方法的原理是假设数据集中的正常数据符合某种概率分布,然后利用统计推断方法检测数据集中与该概率分布不符的数据点。常用的统计模型包括高斯分布、马尔科夫模型等。

总之,无监督学习通过发现数据中的潜在结构和模式,可以实现对数据的探索、降维、特征提取、聚类和异常检测等任务。在实际应用中,不同的无监督学习方法可以结合使用,以获得更好的效果。

终于介绍完啦!小伙伴们,这篇关于《无监督学习:揭示数据中的潜在结构与模式》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布科技周边相关知识,快来关注吧!

版本声明
本文转载于:网易伏羲 如有侵犯,请联系study_golang@163.com删除
生成式人工智能的原理与应用生成式人工智能的原理与应用
上一篇
生成式人工智能的原理与应用
如何通过主动学习以较少的数据进行神经网络训练
下一篇
如何通过主动学习以较少的数据进行神经网络训练
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 茅茅虫AIGC检测:精准识别AI生成内容,保障学术诚信
    茅茅虫AIGC检测
    茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
    87次使用
  • 赛林匹克平台:科技赛事聚合,赋能AI、算力、量子计算创新
    赛林匹克平台(Challympics)
    探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
    94次使用
  • SEO  笔格AIPPT:AI智能PPT制作,免费生成,高效演示
    笔格AIPPT
    SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
    97次使用
  • 稿定PPT:在线AI演示设计,高效PPT制作工具
    稿定PPT
    告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
    91次使用
  • Suno苏诺中文版:AI音乐创作平台,人人都是音乐家
    Suno苏诺中文版
    探索Suno苏诺中文版,一款颠覆传统音乐创作的AI平台。无需专业技能,轻松创作个性化音乐。智能词曲生成、风格迁移、海量音效,释放您的音乐灵感!
    91次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码