用实现代码解释id3算法生成决策树的过程
在科技周边实战开发的过程中,我们经常会遇到一些这样那样的问题,然后要卡好半天,等问题解决了才发现原来一些细节知识点还是没有掌握好。今天golang学习网就整理分享《用实现代码解释id3算法生成决策树的过程》,聊聊,希望可以帮助到正在努力赚钱的你。

ID3算法是一种经典的用于生成决策树的算法,由Ross Quinlan于1986年提出。它通过计算每个特征的信息增益来选择最佳的特征作为分裂节点。ID3算法在机器学习和数据挖掘领域被广泛应用,尤其在分类任务中发挥重要作用。它的使用能够提高模型的准确性和可解释性,同时也能够处理具有多个特征和类别的复杂数据集。
决策树是一种用于分类或回归的树形结构。它由节点和边组成,节点代表特征或属性,边代表可能的取值或决策。根节点表示最重要的特征,叶节点表示最终的分类结果。决策树通过逐步判断特征值来决定分类结果,每次判断都沿着树的分支前进。这种结构简单直观,易于理解和解释。决策树算法的关键是选择最佳的特征和决策点,以最大程度地提高分类的准确性。
ID3算法的基本思路是通过选择最佳特征,在每个节点上将数据集分成更小的子集。然后,递归地对每个子集应用相同的过程,直到达到终止条件。在分类问题中,终止条件通常是所有实例属于同一类别或没有更多特征可供分裂。而在回归问题中,终止条件通常是达到一定的误差或深度限制。这种自顶向下的递归分割方式,使得ID3算法在构建决策树时能够充分利用特征的信息,从而实现高效的分类和回归任务。
ID3算法生成决策树的过程
1.选取最佳特征
计算每个特征的信息增益,选择具有最高信息增益的特征作为分裂节点。信息增益是指将数据集按照某个特征进行分裂后,分类结果的纯度提高了多少,即熵的变化量。
信息增益计算公式如下:
IG(D,F)=H(D)-\sum_{v\in Values(F)}\frac{|D_v|}{|D|}H(D_v)
其中,IG(D,F)表示在数据集D中,特征F的信息增益;H(D)表示数据集D的熵;D_v表示在特征F上取值为v的子集;Values(F)表示特征F的取值集合。
2.将数据集分成子集
以选取的最佳特征为分裂节点,将数据集D分成若干个子集D_1,D_2,…,D_k,每个子集对应特征F的一个取值。
3.递归生成子树
对于每个子集D_i,递归地生成一个子树。如果子集D_i中所有实例属于同一类别,或者没有更多特征可供分裂,则生成一个叶节点,将该类别作为分类结果。
4.构建决策树
将分裂节点和子树连接起来,构成决策树。
ID3算法的Python实现代码
import math
class DecisionTree:
def __init__(self):
self.tree = {}
def fit(self, X, y):
self.tree = self._build_tree(X, y)
def predict(self, X):
y_pred = []
for i in range(len(X)):
node = self.tree
while isinstance(node, dict):
feature = list(node.keys())[0]
value = X[i][feature]
node = node[feature][value]
y_pred.append(node)
return y_pred
def _entropy(self, y):
n = len(y)
counts = {}
for value in y:
counts[value] = counts.get(value, 0) + 1
entropy = 0
for count in counts.values():
p = count / n
entropy -= p * math.log2(p)
return entropy
def _information_gain(self, X, y, feature):
n = len(y)
values = set([x[feature] for x in X])
entropy = 0
for value in values:
subset_x = [x forx in X if x[feature] == value]
subset_y = [y[i] for i in range(len(y)) if X[i][feature] == value]
entropy += len(subset_y) / n * self._entropy(subset_y)
information_gain = self._entropy(y) - entropy
return information_gain
def _majority_vote(self, y):
counts = {}
for value in y:
counts[value] = counts.get(value, 0) + 1
majority = max(counts, key=counts.get)
return majority
def _build_tree(self, X, y):
if len(set(y)) == 1:
return y[0]
if len(X[0]) == 0:
return self._majority_vote(y)
best_feature = max(range(len(X[0])), key=lambda i: self._information_gain(X, y, i))
tree = {best_feature: {}}
values = set([x[best_feature] for x in X])
for value in values:
subset_x = [x for x in X if x[best_feature] == value]
subset_y = [y[i] for i in range(len(y)) if X[i][best_feature] == value]
subtree = self._build_tree(subset_x, subset_y)
tree[best_feature][value] = subtree
return tree在上面的代码中,fit方法用于训练决策树,predict方法用于预测新实例的类别。_entropy方法计算熵,_information_gain方法计算信息增益,_majority_vote方法用于在叶节点中进行投票决策,_build_tree方法递归生成子树。最终构建出的决策树存储在self.tree中。
需要注意的是,上面的代码实现并不包含剪枝等优化技术。在实际应用中,为了避免过拟合,通常需要采用剪枝等技术来优化决策树的生成过程。
总体来说,ID3算法是一种简单而有效的决策树生成算法,它通过计算每个特征的信息增益来选择最佳特征,并递归地生成决策树。它在处理小数据集和具有离散特征的数据集时表现良好,并且易于理解和实现。但是,它不能处理连续特征和缺失值,并且容易受到噪声数据的干扰。因此,在实际应用中,需要根据数据集的特点选择合适的算法和优化技术。
文中关于机器学习,算法的概念的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《用实现代码解释id3算法生成决策树的过程》文章吧,也可关注golang学习网公众号了解相关技术文章。
推荐算法的常见分类:5种常用机器学习方法
- 上一篇
- 推荐算法的常见分类:5种常用机器学习方法
- 下一篇
- 异或问题的挑战:为何单层神经网络不可行
-
- 科技周边 · 人工智能 | 16分钟前 |
- ChatGPT账号被封怎么解封?申诉技巧分享
- 224浏览 收藏
-
- 科技周边 · 人工智能 | 58分钟前 | 编程语言 Java PHP
- 文心一言官网入口与创作教程
- 447浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 | 测试用例 DeepSeek
- DeepSeek生成测试用例教程与QA应用详解
- 164浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 免费AI聊天平台有哪些
- 264浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 | AI智能写作
- AI写作工具官网入口及网址推荐
- 334浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 李斌:纯电车增长超增程,充电体验升级
- 218浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- 小米汽车工厂起火,OPPO新机将发布
- 429浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 | 松鼠ai
- 松鼠AI绑定手机号教程步骤详解
- 123浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 | ai志愿助手
- AI志愿助手怎么开启位置共享
- 398浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 | GrokAI
- GrokAI动态图表生成技巧全解析
- 122浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- 乾崑智驾33款全系推荐,靳玉志力荐购车首选
- 396浏览 收藏
-
- 科技周边 · 人工智能 | 3小时前 | DeepSeek
- Deepseek登录入口与多端使用教程
- 339浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3266次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3481次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3507次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4619次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3888次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览

