深入解析零样本学习的概念
对于一个科技周边开发者来说,牢固扎实的基础是十分重要的,golang学习网就来带大家一点点的掌握基础知识点。今天本篇文章带大家了解《深入解析零样本学习的概念》,主要介绍了,希望对大家的知识积累有所帮助,快点收藏起来吧,否则需要时就找不到了!
零样本学习(ZSL)是一种机器学习范例,利用预先训练的深度学习模型来推广新类别的样本。它的核心思想是将已有的训练实例中的知识转移到测试实例的分类任务中。具体而言,零样本学习技术通过学习中间的语义层和属性,然后在推理过程中应用这些知识来预测新的数据。这种方法允许机器学习模型在没有先前见过的类别上进行分类,实现了对未知类别的识别能力。通过零样本学习,模型可以从有限的训练数据中获得更广泛的泛化能力,提高了在现实世界中面对新问题的适应性。
需要注意,零样本学习中训练和测试集是不相交的。
零样本学习是迁移学习的一个子领域,主要应用于特征和标签空间完全不同的情况。与常见的同构迁移学习不同,零样本学习不仅仅是微调预训练模型,它需要从无任何样本的情况下学习如何处理新的问题。零样本学习的目标是通过利用已有知识和经验,将这些知识迁移到新的领域中,以便解决新问题。这种异构迁移学习对于处理没有标签或很少标签的情况非常有用,因为它可以通过利用已有的标签信息,来进行预测和分类。因此,零样本学习具有很大的潜力,在许多现实世界的应用中发挥重要作用。
零样本学习数据分类
可见类(Seen Classes):用于训练深度学习模型的数据类,比如已标记的训练数据。
不可见类(Unseen Classes):现有深度模型需要概括的数据类,比如未被标记的训练数据。
辅助信息:由于没有属于不可见类的标记实例可用,因此需要一些辅助信息来解决零样本学习问题。此类辅助信息应包含所有不可见类的信息。
零样本学习还依赖于已标记的可见类和不可见类训练集。可见类和不可见类都在称为语义空间的高维向量空间中相关,其中来自可见类的知识可以转移到不可见类。
零样本学习的阶段
零样本学习涉及训练和推理的两个阶段:
训练:获取有关标记数据样本集的知识。
推理:扩展先前获得的知识,将提供的辅助信息用于新的类集。
零样本学习方法
基于分类器的方法
现有的基于分类器的方法通常采用一对多的解决方案来训练多类零样本分类器。也就是说,对于每个看不见的类,训练一个二进制的一对一分类器。根据构建分类器的方法,我们进一步将基于分类器的方法分为三类。
①对应方法
对应方法旨在通过每个类的二元一对一分类器与其对应的类原型之间的对应关系来构造不可见类的分类器。每个类在语义空间中只有一个对应的原型。因此,这个原型可以看作是这个类的“表示”。同时,在特征空间中,对于每一类,都有一个对应的二元一对一分类器,也可以看作是该类的“表征”。对应方法旨在学习这两种“表示”之间的对应函数。
②关系方法
方法旨在基于不可见类的类间和类内关系来构造分类器或不可见类。在特征空间中,可以利用可用数据学习所看到的类的二进制一对一分类器。同时,可以通过计算相应原型之间的关系来获得可见类和不可见类之间的关系。
③组合方法
组合方法描述了通过组合用于构成类的基本元素的分类器来为不可见类构造分类器的思想。
在组合方法中,认为存在一个构成类的“基本元素”列表。可见类和不可见类中的每个数据点都是这些基本元素的组合。体现在语义空间中,认为每个维度代表一个基本元素,每个类原型表示对应类的这些基本元素的组合。
类原型的每个维度取1或0,表示类是否具有相应的元素。因此,这一类方法主要适用于语义空间。
基于实例的方法
基于实例的方法旨在首先获得不可见类的标记实例,然后使用这些实例来训练零样本分类器。根据这些实例的来源,现有的基于实例的方法可以分为三个子类:
①投影方法
投影方法的思想是通过将特征空间实例和语义空间原型投影到共享空间中来获得不可见类的标记实例。
在属于可见类的特征空间中有标记的训练实例。同时,在语义空间中存在可见类和不可见类的原型。特征和语义空间是实数空间,实例和原型是其中的向量。从这个角度来看,原型也可以被视为带标签的实例。因此,我们在特征空间和语义空间中标记了实例。
②实例借用方法
这些方法通过从训练实例中借用来处理为不可见类获取标记实例。实例借用方法基于类之间的相似性。有了这些相似类的知识,就可以识别属于未见类的实例。
③合成方法
合成方法是通过使用不同的策略合成伪实例来获得不可见类的标记实例。为了合成伪实例,假定每个类的实例遵循某种分布。首先,需要估计不可见类的分布参数。然后,合成不可见类的实例。
零样本学习的局限
与其他概念一样,零样本学习也有其局限性。以下是在实践中应用零样本学习面临的一些最常见的挑战。
1.偏差
在训练阶段,模型只能访问可见类的数据和标签。这会使模型将测试期间不可见类的数据样本预测为可见类。如果在测试期间,模型对来自可见和不可见类的样本进行评估,则偏差问题会变得更加突出。
2.领域转移
零样本学习模型的开发主要是为了在这些数据逐渐可用时将预训练模型扩展到新类。因此,领域转移问题在零样本学习中很常见。当训练集和测试集中数据的统计分布明显不同时,会发生领域转移。
3.中心问题
中心问题与最近邻搜索相关的维数灾难有关。在零样本学习中,中心问题的发生有两个原因。
输入和语义特征都存在于高维空间中。当这样一个高维向量被投影到一个低维空间时,方差会减少,导致映射点被聚类为一个中心。
在零样本学习中广泛使用的岭回归会引发中心问题。它会导致预测出现偏差,即无论如何查询,大部分都只预测了几个类。
4.信息损失
在对可见类进行训练时,模型仅学习用于区分这些可见类的重要属性。而一些潜在信息可能存在于可见类中,如果它们对决策过程没有重大贡献,则不会被学习到。但是,此信息在不可见类的测试阶段很重要。这就会导致信息损失。
理论要掌握,实操不能落!以上关于《深入解析零样本学习的概念》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!

- 上一篇
- Python3.11性能大幅提升:速度提高近64%!

- 下一篇
- AI在计算机视觉中的应用:情绪和情感分析
-
- 科技周边 · 人工智能 | 1小时前 |
- 特斯拉股价开盘跌5.6%,Q1交付33万辆同比降13%
- 397浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 笔灵AI生成答辩PPT
- 探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
- 24次使用
-
- 知网AIGC检测服务系统
- 知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
- 38次使用
-
- AIGC检测-Aibiye
- AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
- 38次使用
-
- 易笔AI论文
- 易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
- 50次使用
-
- 笔启AI论文写作平台
- 笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
- 41次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览