分析使用java实例实现的二叉搜索树
大家好,我们又见面了啊~本文《分析使用java实例实现的二叉搜索树》的内容中将会涉及到等等。如果你正在学习文章相关知识,欢迎关注我,以后会给大家带来更多文章相关文章,希望我们能一起进步!下面就开始本文的正式内容~
概念
二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:
1、若它的左子树不为空,则左子树上所有节点的值都小于根结点的值。
2、若它的右子树不为空,则右子树上所有节点的值都大于根结点的值。
3、它的左右子树也分别为二叉搜索树
直接实践
准备工作:定义一个树节点的类,和二叉搜索树的类。
搜索二叉树的查找功能
假设我们已经构造好了一个这样的二叉树,如下图
我们要思考的第一个问题是如何查找某个值是否在该二叉树中?
根据上述的逻辑,我们来把搜索的方法进行完善。
搜索二叉树的插入操作
根据上述逻辑,我们来写一个插入节点的代码。
搜索二叉树 删除节点的操作 - 难点
再来分析一下:curDummy 和 parentDummy 是怎么找到“替罪羊”的。
总程序 - 模拟实现二叉搜索树
class TreeNode{ public int val; public TreeNode left; public TreeNode right; public TreeNode(int val){ this.val = val; } } public class BinarySearchTree { TreeNode root; //在二叉树中 寻找指定 val 值的节点 // 找到了,返回其节点地址;没找到返回 null public TreeNode search(int key){ TreeNode cur = this.root; while(cur != null){ if(cur.val == key){ return cur; }else if(cur.val < key){ cur = cur.right; }else{ cur = cur.left; } } return null; } // 插入操作 public boolean insert(int key){ if(this.root == null){ this.root = new TreeNode(key); return true; } TreeNode cur = this.root; TreeNode parent = null; while(cur!=null){ if(key > cur.val){ parent = cur; cur = cur.right; }else if(cur.val == key){ return false; }else{ parent = cur; cur = cur.left; } } TreeNode node = new TreeNode(key); if(parent .val > key){ parent.left = node; }else{ parent.right = node; } return true; } // 删除操作 public void remove(int key){ TreeNode cur = root; TreeNode parent = null; // 寻找 删除节点位置。 while(cur!=null){ if(cur.val == key){ removeNode(cur,parent);// 真正删除节点的代码 break; }else if(cur.val < key){ parent = cur; cur = cur.right; }else{ parent = cur; cur = cur.left; } } } // 辅助删除方法:真正删除节点的代码 private void removeNode(TreeNode cur,TreeNode parent){ // 情况一 if(cur.left == null){ if(cur == this.root){ this.root = this.root.right; }else if( cur == parent.left){ parent.left = cur.right; }else{ parent.right = cur.right; } // 情况二 }else if(cur.right == null){ if(cur == this.root){ this.root = root.left; }else if(cur == parent.left){ parent.left = cur.left; }else{ parent.right = cur.left; } // 情况三 }else{ // 第二种方法:在删除节点的右子树中寻找最小值, TreeNode parentDummy = cur; TreeNode curDummy = cur.right; while(curDummy.left != null){ parentDummy = curDummy; curDummy = curDummy.left; } // 此时 curDummy 指向的 cur 右子树 cur.val = curDummy.val; if(parentDummy.left != curDummy){ parentDummy.right = curDummy.right; }else{ parentDummy.left = curDummy.right; } } } // 中序遍历 public void inorder(TreeNode root){ if(root == null){ return; } inorder(root.left); System.out.print(root.val+" "); inorder(root.right); } public static void main(String[] args) { int[] array = {10,8,19,3,9,4,7}; BinarySearchTree binarySearchTree = new BinarySearchTree(); for (int i = 0; i < array.length; i++) { binarySearchTree.insert(array[i]); } binarySearchTree.inorder(binarySearchTree.root); System.out.println();// 换行 System.out.print("插入重复的数据 9:" + binarySearchTree.insert(9)); System.out.println();// 换行 System.out.print("插入不重复的数据 1:" + binarySearchTree.insert(1)); System.out.println();// 换行 binarySearchTree.inorder(binarySearchTree.root); System.out.println();// 换行 binarySearchTree.remove(19); System.out.print("删除元素 19 :"); binarySearchTree.inorder(binarySearchTree.root); System.out.println();// 换行 System.out.print("查找不存在的数据50 :"); System.out.println(binarySearchTree.search(50)); System.out.print("查找存在的数据 7:"); System.out.println(binarySearchTree.search(7)); } }
性能分析
插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能。
对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二叉搜索树的深度的函数,即结点越深,则比较次数越多。
但对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树:如果我们能保证 二叉搜索树的左右子树高度差不超过1。尽量满足高度平衡条件。
这就成 AVL 树了(高度平衡的二叉搜索树)。而AVL树,也有缺点:需要一个频繁的旋转。浪费很多效率。
至此 红黑树就诞生了,避免更多的旋转。
和 java 类集的关系
TreeMap 和 TreeSet 即 java 中利用搜索树实现的 Map 和 Set;实际上用的是红黑树,而红黑树是一棵近似平衡的二叉搜索树,即在二叉搜索树的基础之上 + 颜色以及红黑树性质验证,关于红黑树的内容,等博主学了,会写博客的。
本篇关于《分析使用java实例实现的二叉搜索树》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于文章的相关知识,请关注golang学习网公众号!

- 上一篇
- 常见的无监督学习算法解析

- 下一篇
- 什么是基于物理信息的神经网络?
-
- 文章 · java教程 | 3小时前 |
- Java必备知识点详解与体系结构解析
- 493浏览 收藏
-
- 文章 · java教程 | 6小时前 |
- Java线程池CPU占用100%原因与解决方案
- 403浏览 收藏
-
- 文章 · java教程 | 8小时前 |
- 若依框架MyBatis配置使用攻略
- 240浏览 收藏
-
- 文章 · java教程 | 22小时前 |
- Java、Python、C语言区别深度解析
- 210浏览 收藏
-
- 文章 · java教程 | 1天前 |
- SpringCloud微服务OTA升级,覆盖Docker及K8s部署攻略
- 461浏览 收藏
-
- 文章 · java教程 | 1天前 | java C语言
- 会Java就能学C吗?Java与C语言关联性大揭秘
- 353浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 笔灵AI生成答辩PPT
- 探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
- 20次使用
-
- 知网AIGC检测服务系统
- 知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
- 29次使用
-
- AIGC检测-Aibiye
- AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
- 35次使用
-
- 易笔AI论文
- 易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
- 43次使用
-
- 笔启AI论文写作平台
- 笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
- 36次使用
-
- 提升Java功能开发效率的有力工具:微服务架构
- 2023-10-06 501浏览
-
- 掌握Java海康SDK二次开发的必备技巧
- 2023-10-01 501浏览
-
- 如何使用java实现桶排序算法
- 2023-10-03 501浏览
-
- Java开发实战经验:如何优化开发逻辑
- 2023-10-31 501浏览
-
- 如何使用Java中的Math.max()方法比较两个数的大小?
- 2023-11-18 501浏览