当前位置:首页 > 文章列表 > 文章 > java教程 > 分析使用java实例实现的二叉搜索树

分析使用java实例实现的二叉搜索树

来源:亿速云 2024-02-05 13:28:32 0浏览 收藏
推广推荐
下载万磁搜索绿色版 ➜
支持 PC / 移动端,安全直达

大家好,我们又见面了啊~本文《分析使用java实例实现的二叉搜索树》的内容中将会涉及到等等。如果你正在学习文章相关知识,欢迎关注我,以后会给大家带来更多文章相关文章,希望我们能一起进步!下面就开始本文的正式内容~

    概念

    二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:
    1、若它的左子树不为空,则左子树上所有节点的值都小于根结点的值。
    2、若它的右子树不为空,则右子树上所有节点的值都大于根结点的值。
    3、它的左右子树也分别为二叉搜索树
    java二叉搜索树使用实例分析

    直接实践

    准备工作:定义一个树节点的类,和二叉搜索树的类。

    java二叉搜索树使用实例分析

    搜索二叉树的查找功能

    假设我们已经构造好了一个这样的二叉树,如下图

    java二叉搜索树使用实例分析

    我们要思考的第一个问题是如何查找某个值是否在该二叉树中?

    java二叉搜索树使用实例分析

    根据上述的逻辑,我们来把搜索的方法进行完善。

    java二叉搜索树使用实例分析

    搜索二叉树的插入操作

    java二叉搜索树使用实例分析

    根据上述逻辑,我们来写一个插入节点的代码。

    java二叉搜索树使用实例分析

    搜索二叉树 删除节点的操作 - 难点

    java二叉搜索树使用实例分析

    再来分析一下:curDummy 和 parentDummy 是怎么找到“替罪羊”的。

    java二叉搜索树使用实例分析

    总程序 - 模拟实现二叉搜索树

    class TreeNode{
        public int val;
        public TreeNode left;
        public TreeNode right;
        public TreeNode(int val){
            this.val = val;
        }
    }
    
    
    public class BinarySearchTree {
        TreeNode root;
    
        //在二叉树中 寻找指定 val 值的节点
        // 找到了,返回其节点地址;没找到返回 null
        public TreeNode search(int key){
            TreeNode cur = this.root;
            while(cur != null){
                if(cur.val == key){
                    return cur;
                }else if(cur.val < key){
                    cur = cur.right;
                }else{
                    cur = cur.left;
                }
            }
            return null;
        }
        // 插入操作
        public boolean insert(int key){
            if(this.root == null){
                this.root = new TreeNode(key);
                return true;
            }
            TreeNode cur = this.root;
            TreeNode parent = null;
            while(cur!=null){
                if(key > cur.val){
                    parent  = cur;
                    cur = cur.right;
                }else if(cur.val == key){
                    return false;
                }else{
                    parent  = cur;
                    cur = cur.left;
                }
            }
            TreeNode node = new TreeNode(key);
            if(parent .val > key){
                parent.left = node;
            }else{
                parent.right = node;
            }
            return true;
        }
        // 删除操作
        public void remove(int key){
            TreeNode cur = root;
            TreeNode parent = null;
            // 寻找 删除节点位置。
            while(cur!=null){
                if(cur.val == key){
                    removeNode(cur,parent);// 真正删除节点的代码
                    break;
                }else if(cur.val < key){
                    parent = cur;
                    cur = cur.right;
                }else{
                    parent = cur;
                    cur = cur.left;
                }
            }
        }
        // 辅助删除方法:真正删除节点的代码
        private void removeNode(TreeNode cur,TreeNode parent){
            // 情况一
            if(cur.left == null){
                if(cur == this.root){
                    this.root = this.root.right;
                }else if( cur == parent.left){
                    parent.left = cur.right;
                }else{
                    parent.right = cur.right;
                }
                // 情况二
            }else if(cur.right == null){
                if(cur == this.root){
                    this.root = root.left;
                }else if(cur == parent.left){
                    parent.left = cur.left;
                }else{
                    parent.right = cur.left;
                }
                // 情况三
            }else{
                // 第二种方法:在删除节点的右子树中寻找最小值,
                TreeNode parentDummy = cur;
                TreeNode curDummy = cur.right;
                while(curDummy.left != null){
                    parentDummy = curDummy;
                    curDummy = curDummy.left;
                }
                // 此时 curDummy 指向的 cur 右子树
                cur.val = curDummy.val;
                if(parentDummy.left != curDummy){
                    parentDummy.right = curDummy.right;
                }else{
                    parentDummy.left = curDummy.right;
                }
    
            }
        }
       // 中序遍历
        public void inorder(TreeNode root){
            if(root == null){
                return;
            }
            inorder(root.left);
            System.out.print(root.val+" ");
            inorder(root.right);
        }
    
        public static void main(String[] args) {
            int[] array = {10,8,19,3,9,4,7};
            BinarySearchTree binarySearchTree = new BinarySearchTree();
            for (int i = 0; i < array.length; i++) {
                binarySearchTree.insert(array[i]);
            }
            binarySearchTree.inorder(binarySearchTree.root);
            System.out.println();// 换行
            System.out.print("插入重复的数据 9:" + binarySearchTree.insert(9));
            System.out.println();// 换行
            System.out.print("插入不重复的数据 1:" + binarySearchTree.insert(1));
            System.out.println();// 换行
            binarySearchTree.inorder(binarySearchTree.root);
            System.out.println();// 换行
            binarySearchTree.remove(19);
            System.out.print("删除元素 19 :");
            binarySearchTree.inorder(binarySearchTree.root);
            System.out.println();// 换行
            System.out.print("查找不存在的数据50 :");
            System.out.println(binarySearchTree.search(50));
            System.out.print("查找存在的数据 7:");
            System.out.println(binarySearchTree.search(7));
        }
    }

    java二叉搜索树使用实例分析

    性能分析

      插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能。

      对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二叉搜索树的深度的函数,即结点越深,则比较次数越多。

      但对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树:
    java二叉搜索树使用实例分析

    如果我们能保证 二叉搜索树的左右子树高度差不超过1。尽量满足高度平衡条件。
    这就成 AVL 树了(高度平衡的二叉搜索树)。而AVL树,也有缺点:需要一个频繁的旋转。浪费很多效率。
    至此 红黑树就诞生了,避免更多的旋转。

    和 java 类集的关系

    TreeMap 和 TreeSet 即 java 中利用搜索树实现的 Map 和 Set;实际上用的是红黑树,而红黑树是一棵近似平衡的二叉搜索树,即在二叉搜索树的基础之上 + 颜色以及红黑树性质验证,关于红黑树的内容,等博主学了,会写博客的。

    本篇关于《分析使用java实例实现的二叉搜索树》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于文章的相关知识,请关注golang学习网公众号!

    版本声明
    本文转载于:亿速云 如有侵犯,请联系study_golang@163.com删除
    常见的无监督学习算法解析常见的无监督学习算法解析
    上一篇
    常见的无监督学习算法解析
    什么是基于物理信息的神经网络?
    下一篇
    什么是基于物理信息的神经网络?
    查看更多
    最新文章
    查看更多
    课程推荐
    • 前端进阶之JavaScript设计模式
      前端进阶之JavaScript设计模式
      设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
      543次学习
    • GO语言核心编程课程
      GO语言核心编程课程
      本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
      516次学习
    • 简单聊聊mysql8与网络通信
      简单聊聊mysql8与网络通信
      如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
      500次学习
    • JavaScript正则表达式基础与实战
      JavaScript正则表达式基础与实战
      在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
      487次学习
    • 从零制作响应式网站—Grid布局
      从零制作响应式网站—Grid布局
      本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
      485次学习
    查看更多
    AI推荐
    • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
      ChatExcel酷表
      ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
      3347次使用
    • Any绘本:开源免费AI绘本创作工具深度解析
      Any绘本
      探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
      3558次使用
    • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
      可赞AI
      可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
      3590次使用
    • 星月写作:AI网文创作神器,助力爆款小说速成
      星月写作
      星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
      4715次使用
    • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
      MagicLight
      MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
      3964次使用
    微信登录更方便
    • 密码登录
    • 注册账号
    登录即同意 用户协议隐私政策
    返回登录
    • 重置密码