当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 区分线性支持向量机与通用支持向量机的不同

区分线性支持向量机与通用支持向量机的不同

来源:网易伏羲 2024-01-25 15:59:58 0浏览 收藏

积累知识,胜过积蓄金银!毕竟在科技周边开发的过程中,会遇到各种各样的问题,往往都是一些细节知识点还没有掌握好而导致的,因此基础知识点的积累是很重要的。下面本文《区分线性支持向量机与通用支持向量机的不同》,就带大家讲解一下知识点,若是你对本文感兴趣,或者是想搞懂其中某个知识点,就请你继续往下看吧~

线性支持向量机和一般向量机的区别

线性支持向量机(LSVM)和一般支持向量机(SVM)是常用于分类和回归的机器学习模型。它们的核心思想是通过在数据空间中找到最佳超平面来分离不同的类别或解决回归问题。尽管它们都属于支持向量机的范畴,但它们之间存在一些区别。 LSVM是一种基于线性核函数的支持向量机模型,它假设数据可以通过一个线性超平面进行良好的分割。它的优点是计算简单且容易解释,但它只能处理线性可分问题,对于非线性数据可能效果不佳。 SVM是一种更通用的支持向量机模型,它使用核函数来将数据映射到高维特征空间,从而将非线性问题转化为线性可分问题。SVM可以使用不同的核函数来适应不同类型的数据,例如多项式核、高斯核等。这使得SVM在处理非线性问题时表现更好,但计算复杂度相对

1.模型形式

LSVM是一种线性分类器,其决策边界为一个超平面,表示为w^Tx+b=0。其中,w是法向量,b是偏移量。与LSVM不同,SVM不仅支持线性分类,还能使用核函数将数据映射到高维空间中进行非线性分类或回归。SVM的决策边界可表示为\sum_{i=1}^n\alpha_i y_i K(x_i,x)+b=0。在此方程中,\alpha_i是拉格朗日乘子,y_i是标签,K(x_i,x)是核函数的输出。

2.模型优化

LSVM和SVM在模型优化上有一些不同。LSVM的目标是最大化间隔,即使得决策边界到每个类别最近样本点的距离最大化。而SVM的目标是同时最小化损失函数并最大化间隔。SVM通常使用Hinge Loss作为损失函数,它能惩罚误分类的样本。

3.解决问题类型

LSVM仅能进行线性分类或回归,对于非线性问题需要使用非线性变换或者核函数来进行处理。而SVM不仅可以处理线性问题,还可以使用核函数将数据映射到更高维的空间中进行非线性分类或回归。这也是SVM相比LSVM更加灵活的原因之一。

4.模型复杂度

由于SVM支持使用核函数进行非线性分类或回归,因此其模型复杂度一般比LSVM更高。在使用核函数时,数据被映射到高维空间中,导致模型需要处理更多的特征。这也导致SVM的训练时间和计算资源消耗更高,对于大规模数据集的处理可能会带来挑战。

5.对异常值的鲁棒性

LSVM对异常值比较敏感,因为它的目标是最大化间隔,而异常值可能会对间隔产生较大的影响。而SVM则相对鲁棒一些,它使用了Hinge Loss来对误分类样本进行惩罚,因此对于一些异常值的影响会相对较小。

总的来说,LSVM和SVM都是支持向量机的变种,都能够用于分类和回归问题。相比LSVM,SVM更加灵活,可以处理非线性问题,并且相对鲁棒一些。但是,SVM的模型复杂度更高,需要更多的计算资源和训练时间。因此,在实际应用中需要根据具体情况选择适合的模型。

理论要掌握,实操不能落!以上关于《区分线性支持向量机与通用支持向量机的不同》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!

版本声明
本文转载于:网易伏羲 如有侵犯,请联系study_golang@163.com删除
机器学习即服务(MLaaS)的定义是什么?机器学习即服务(MLaaS)的定义是什么?
上一篇
机器学习即服务(MLaaS)的定义是什么?
基于嵌套采样的算法的核心思想和具体实施过程
下一篇
基于嵌套采样的算法的核心思想和具体实施过程
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 千音漫语:智能声音创作助手,AI配音、音视频翻译一站搞定!
    千音漫语
    千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
    113次使用
  • MiniWork:智能高效AI工具平台,一站式工作学习效率解决方案
    MiniWork
    MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
    106次使用
  • NoCode (nocode.cn):零代码构建应用、网站、管理系统,降低开发门槛
    NoCode
    NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
    126次使用
  • 达医智影:阿里巴巴达摩院医疗AI影像早筛平台,CT一扫多筛癌症急慢病
    达医智影
    达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
    117次使用
  • 智慧芽Eureka:更懂技术创新的AI Agent平台,助力研发效率飞跃
    智慧芽Eureka
    智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
    122次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码