特征缩放对局部优化的影响
目前golang学习网上已经有很多关于科技周边的文章了,自己在初次阅读这些文章中,也见识到了很多学习思路;那么本文《特征缩放对局部优化的影响》,也希望能帮助到大家,如果阅读完后真的对你学习科技周边有帮助,欢迎动动手指,评论留言并分享~
特征缩放在机器学习中扮演着重要的角色,它与局部最优之间有着密切的关系。特征缩放指的是将特征数据按比例进行调整,以使其在数值上具有相似的范围。这样做的目的是避免某些特征在模型训练中对结果产生过大的影响,从而使模型更加稳定和准确。 局部最优则指的是在一个局部区域内找到的最优解,但不一定是全局最优解。在机器学习中,优化算法常常会通过迭代的方式寻找最优解。如果特征数据的范围差异较大,那么在模型训练过程中,一些特征可能会对优化算法的收敛产生较大的影响,使得算法陷入局部最优而无法找到全局最优解。 为了解决这个问题,我们可以对特征进行缩放。通过将特征数据按比例调整到相似的
特征缩放的目的是为了确保不同特征的数值范围相近,避免某些特征对模型训练结果产生过大的影响。
假设我们有一个简单的线性回归问题,特征为房屋面积(单位:平方米)和房屋价格(单位:万元)。如果我们不对特征进行缩放,直接使用原始数据进行建模,可能会遇到局部最优的问题。这是因为特征的数值范围可能不同,导致模型在计算时偏向于数值较大的特征。为了解决这个问题,我们可以对特征进行缩放,例如使用均值归一化或者标准化的方法,将特征值缩放到相同的数值范围内。这样可以确保模型在计算时对所有特征都给予了相同的重要性,
import numpy as np from sklearn.linear_model import LinearRegression # 原始数据 area = np.array([100, 150, 200, 250, 300]).reshape(-1, 1) price = np.array([50, 75, 100, 125, 150]) # 不进行特征缩放的线性回归 model_unscaled = LinearRegression() model_unscaled.fit(area, price) # 缩放数据 area_scaled = (area - np.mean(area)) / np.std(area) price_scaled = (price - np.mean(price)) / np.std(price) # 进行特征缩放的线性回归 model_scaled = LinearRegression() model_scaled.fit(area_scaled, price_scaled)
在上述代码中,我们首先使用未经过特征缩放的数据进行线性回归建模,然后使用经过特征缩放的数据进行线性回归建模。
由于面积和价格的单位不同,线性回归算法可能会更显著地拟合面积特征而忽视价格。特征缩放是必要的,以避免模型在局部最优点附近得到较差的拟合效果。
通过对特征进行缩放,使得两个特征具有相同的尺度,可以避免这种问题。在经过特征缩放后的数据上进行线性回归建模,模型可以更均衡地对待两个特征,减少了受到不同尺度影响而导致的局部最优点的问题。
需要注意的是,代码中的特征缩放使用了均值归一化和标准化,可以根据实际情况选择适当的特征缩放方法。
总结来说,特征缩放有助于避免局部最优,通过统一尺度,确保特征权重的平衡,提高模型在训练过程中能够更好地摆脱局部最优点,从而提升整体优化的可能性。
以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于科技周边的相关知识,也可关注golang学习网公众号。

- 上一篇
- 了解二元神经网络的基本概念

- 下一篇
- 解决win10系统没有声音问题的方法
-
- 科技周边 · 人工智能 | 8小时前 | 个性化定制 笔灵AI写作 免费功能 付费功能 bilings.ai
- 笔灵AI写作官网攻略:免费注册即用
- 208浏览 收藏
-
- 科技周边 · 人工智能 | 8小时前 | 算力需求 国产AI大模型 国家超算互联网平台 MiniMax-Text-01 注册用户
- 国家超算平台发布超长文本模型
- 278浏览 收藏
-
- 科技周边 · 人工智能 | 11小时前 |
- Llama4刷榜惹争议,20万显卡仅此成绩?
- 275浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 笔灵AI生成答辩PPT
- 探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
- 14次使用
-
- 知网AIGC检测服务系统
- 知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
- 23次使用
-
- AIGC检测-Aibiye
- AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
- 30次使用
-
- 易笔AI论文
- 易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
- 40次使用
-
- 笔启AI论文写作平台
- 笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
- 35次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览