Python实现支持向量机(SVM)分类算法的原理
来源:网易伏羲
2024-01-27 17:42:42
0浏览
收藏
一分耕耘,一分收获!既然打开了这篇文章《Python实现支持向量机(SVM)分类算法的原理》,就坚持看下去吧!文中内容包含等等知识点...希望你能在阅读本文后,能真真实实学到知识或者帮你解决心中的疑惑,也欢迎大佬或者新人朋友们多留言评论,多给建议!谢谢!
在机器学习中,支持向量机(SVM)常被用于数据分类和回归分析,是由分离超平面的判别算法模型。换句话说,给定标记的训练数据,该算法输出一个对新示例进行分类的最佳超平面。
支持向量机(SVM)算法模型是将示例表示为空间中的点,经过映射后,不同类别的示例被尽可能划分。除了执行线性分类外,支持向量机(SVM)还可以有效地执行非线性分类,将其输入隐式映射到高维特征空间。
支持向量机做什么?
给定一组训练示例,并根据2个类别给每个训练示例都各自标记上类别,再通过支持向量机(SVM)训练算法构建一个模型,将新示例分配给这2个类别,使其成为非概率二元线性分类器。
Python实现支持向量机(SVM)分类
先决条件:Numpy、Pandas、matplot-lib、scikit-learn
首先,创建数据集
from sklearn.datasets.samples_generator import make_blobs X,Y=make_blobs(n_samples=500,centers=2, random_state=0,cluster_std=0.40) import matplotlib.pyplot as plt plt.scatter(X[:,0],X[:,1],c=Y,s=50,cmap='spring'); plt.show()
分类
xfit=np.linspace(-1,3.5) plt.scatter(X[:,0],X[:,1],c=Y,s=50,cmap='spring') for m,b,d in[(1,0.65,0.33),(0.5,1.6,0.55),(-0.2,2.9,0.2)]: yfit=m*xfit+b plt.plot(xfit,yfit,'-k') plt.fill_between(xfit,yfit-d,yfit+d,edgecolor='none', color='#AAAAAA',alpha=0.4) plt.xlim(-1,3.5); plt.show()
文中关于机器学习,算法的概念的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《Python实现支持向量机(SVM)分类算法的原理》文章吧,也可关注golang学习网公众号了解相关技术文章。
版本声明
本文转载于:网易伏羲 如有侵犯,请联系study_golang@163.com删除

- 上一篇
- 移动硬盘内置双系统的Mac电脑兼容性问题

- 下一篇
- KDD 2023 | 基于数据的在线游戏玩家流失分析决策支持系统
查看更多
最新文章
-
- 文章 · python教程 | 11分钟前 |
- Python开发区块链入门教程
- 109浏览 收藏
-
- 文章 · python教程 | 24分钟前 |
- PythonMuller方法求复数根:常见错误解决指南
- 364浏览 收藏
-
- 文章 · python教程 | 45分钟前 |
- GunicornGPU服务优化技巧分享
- 188浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python实时视频流处理方法解析
- 154浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python中//的用法及整除解析
- 174浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Pythonrequests库使用教程详解
- 278浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- PydanticV2:多态模型新处理方式
- 223浏览 收藏
-
- 文章 · python教程 | 2小时前 | docker Python 镜像 容器化 Dockerfile
- Docker运行Python脚本的实用技巧分享
- 222浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python去重技巧:drop\_duplicates参数详解
- 155浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- PythonVR开发环境配置详解
- 257浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- 离群文档处理技巧与优化方法
- 343浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
查看更多
AI推荐
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 231次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 227次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 226次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 231次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 252次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览