当前位置:首页 > 文章列表 > 文章 > python教程 > t-SNE算法的原理与Python代码实现解析

t-SNE算法的原理与Python代码实现解析

来源:网易伏羲 2024-02-02 23:42:05 0浏览 收藏

从现在开始,我们要努力学习啦!今天我给大家带来《t-SNE算法的原理与Python代码实现解析》,感兴趣的朋友请继续看下去吧!下文中的内容我们主要会涉及到等等知识点,如果在阅读本文过程中有遇到不清楚的地方,欢迎留言呀!我们一起讨论,一起学习!

T分布随机邻域嵌入(t-SNE)算法原理及Python代码实现t-SNE算法

T分布随机邻域嵌入(t-SNE),是一种用于可视化的无监督机器学习算法,使用非线性降维技术,根据数据点与特征的相似性,试图最小化高维和低维空间中这些条件概率(或相似性)之间的差异,以在低维空间中完美表示数据点。

因此,t-SNE擅长在二维或三维的低维空间中嵌入高维数据以进行可视化。需要注意的是,t-SNE使用重尾分布来计算低维空间中两点之间的相似度,而不是高斯分布,这有助于解决拥挤和优化问题。而且离群值不影响t-SNE。

t-SNE算法步骤

1.找出高维空间中相邻点之间的成对相似性。

2.根据高维空间中点的成对相似性,将高维空间中的每个点映射到低维映射。

3.使用基于Kullback-Leibler散度(KL散度)的梯度下降找到最小化条件概率分布之间的不匹配的低维数据表示。

4.使用Student-t分布计算低维空间中两点之间的相似度。

MNIST数据集上实现t-SNE的Python代码

导入模块

# Importing Necessary Modules.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
from sklearn.preprocessing import StandardScaler

读取数据

# Reading the data using pandas
df = pd.read_csv('mnist_train.csv')

# print first five rows of df
print(df.head(4))

# save the labels into a variable l.
l = df['label']

# Drop the label feature and store the pixel data in d.
d = df.drop("label", axis = 1)

数据预处理

# Data-preprocessing: Standardizing the data
from sklearn.preprocessing import StandardScaler

standardized_data = StandardScaler().fit_transform(data)
print(standardized_data.shape)

输出

# TSNE
# Picking the top 1000 points as TSNE
# takes a lot of time for 15K points
data_1000 = standardized_data[0:1000, :]
labels_1000 = labels[0:1000]

model = TSNE(n_components = 2, random_state = 0)
# configuring the parameters
# the number of components = 2
# default perplexity = 30
# default learning rate = 200
# default Maximum number of iterations
# for the optimization = 1000

tsne_data = model.fit_transform(data_1000)

# creating a new data frame which
# help us in plotting the result data
tsne_data = np.vstack((tsne_data.T, labels_1000)).T
tsne_df = pd.DataFrame(data = tsne_data,
columns =("Dim_1", "Dim_2", "label"))

# Plotting the result of tsne
sn.FacetGrid(tsne_df, hue ="label", size = 6).map(
plt.scatter, 'Dim_1', 'Dim_2').add_legend()

plt.show()

以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于文章的相关知识,也可关注golang学习网公众号。

版本声明
本文转载于:网易伏羲 如有侵犯,请联系study_golang@163.com删除
用爱思删除苹果手机mac照片?用爱思删除苹果手机mac照片?
上一篇
用爱思删除苹果手机mac照片?
迁移学习在计算机视觉中的应用技巧
下一篇
迁移学习在计算机视觉中的应用技巧
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    28次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    42次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    39次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    51次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    42次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码