当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 大语言模型(LLM)中的RLHF技术解析

大语言模型(LLM)中的RLHF技术解析

来源:网易伏羲 2024-01-23 17:46:32 0浏览 收藏

学习知识要善于思考,思考,再思考!今天golang学习网小编就给大家带来《大语言模型(LLM)中的RLHF技术解析》,以下内容主要包含等知识点,如果你正在学习或准备学习科技周边,就都不要错过本文啦~让我们一起来看看吧,能帮助到你就更好了!

什么是RLHF?大语言模型(LLM)中的RLHF技术

RLHF即从人类反馈中强化学习。本文就来介绍大语言模型(LLM)是如何与RLHF结合起来的。

RLHF的机制

强化学习是机器学习的一个分支,它通过代理与环境交互来学习最优策略。代理选择行动,这些行动会影响环境状态的转换,并得到相应的奖励。奖励是强化学习智能体调整策略的反馈信号。在训练阶段,智能体根据奖励调整策略,以最大化长期回报。

因此,设计恰当的奖励系统至关重要,它是强化学习的关键。而RLHF则通过整合人类的反馈,将人类纳入训练过程中,以增强强化学习代理的训练效果。

RLHF通用框架

大型语言模型(LLM)的强化学习微调过程通常包括三个阶段。首先,我们从经过预训练的语言模型开始。由于LLM需要大量的训练数据,从零开始通过人工反馈进行训练是不切实际的。因此,我们可以通过无监督学习的方式进行预训练,利用现有的语言模型进行输出生成。 在预训练完成后,接下来是微调阶段。在此阶段,我们将使用强化学习算法来对LLM进行优化。通过与环境的交互,LLM可以从环境中获得反馈,并通过调整模型的参数来优化其输出。 最后一个阶段是后续微调。在这一阶段,LLM将与特定任务进行交互,并通过

接下来,进入第二阶段,我们需要为RL系统创建奖励模型。在这个阶段,我们训练另一个机器学习模型,它会接收主模型生成的文本并为其生成一个质量分数。通常,我们会使用另一个LLM模型,并进行相应的修改,使其能够输出一个标量值,而不是文本标记序列。这个质量分数将用作奖励信号,以引导主模型生成更高质量的文本。

为了训练奖励模型,我们需要构建一个包含LLM生成文本的质量评估数据集。每个训练示例由一个提示和LLM生成的多个输出组成。接下来,我们请人工评估这些生成文本的质量。然后,我们使用这些评估结果来训练奖励模型,以预测LLM生成文本的得分。通过在LLM的输出和评分之间进行训练,奖励模型能够建立起人类偏好的数学表示。

在最后阶段,我们进行了微调,创建了一个强化学习循环。主LLM的副本被用作RL代理。在每个训练集上,LLM从数据集中获取多个提示,并生成文本。接着,该文本被传递给奖励模型,该模型会给出一个分数,用来评估其与人类偏好的一致性。然后,我们更新LLM,以生成在奖励模型上得分更高的输出。

虽然这是语言模型的RLHF通用框架,但不同的实现目标需要进行对应修改。

RLHF中对语言模型的另一个考虑是在奖励优化和语言一致性之间保持平衡。尽管奖励模型只是对人类偏好的不完美近似,但代理LLM可能会通过违反语法或逻辑一致性来最大化奖励,这与大多数RL系统类似。为了防止这种情况发生,ML团队保留了原始LLM的副本,并在RL循环中使用。他们将原始LLM的输出与RL训练的LLM的输出之间的差异(KL散度)作为负值集成到奖励信号中,以防止模型和原始输出之间的偏差过大。这种策略旨在平衡奖励优化和语言一致性之间的关系。

今天带大家了解了的相关知识,希望对你有所帮助;关于科技周边的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~

版本声明
本文转载于:网易伏羲 如有侵犯,请联系study_golang@163.com删除
推荐算法在机器学习中的应用推荐算法在机器学习中的应用
上一篇
推荐算法在机器学习中的应用
机器学习算法的定义与分类
下一篇
机器学习算法的定义与分类
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • SEO标题协启动:AI驱动的智能对话与内容生成平台 - 提升创作效率
    协启动
    SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
    9次使用
  • Brev AI:零注册门槛的全功能免费AI音乐创作平台
    Brev AI
    探索Brev AI,一个无需注册即可免费使用的AI音乐创作平台,提供多功能工具如音乐生成、去人声、歌词创作等,适用于内容创作、商业配乐和个人创作,满足您的音乐需求。
    9次使用
  • AI音乐实验室:一站式AI音乐创作平台,助力音乐创作
    AI音乐实验室
    AI音乐实验室(https://www.aimusiclab.cn/)是一款专注于AI音乐创作的平台,提供从作曲到分轨的全流程工具,降低音乐创作门槛。免费与付费结合,适用于音乐爱好者、独立音乐人及内容创作者,助力提升创作效率。
    9次使用
  • SEO标题PixPro:AI驱动网页端图像处理平台,提升效率的终极解决方案
    PixPro
    SEO摘要PixPro是一款专注于网页端AI图像处理的平台,提供高效、多功能的图像处理解决方案。通过AI擦除、扩图、抠图、裁切和压缩等功能,PixPro帮助开发者和企业实现“上传即处理”的智能化升级,适用于电商、社交媒体等高频图像处理场景。了解更多PixPro的核心功能和应用案例,提升您的图像处理效率。
    9次使用
  • EasyMusic.ai:零门槛AI音乐生成平台,专业级输出助力全场景创作
    EasyMusic
    EasyMusic.ai是一款面向全场景音乐创作需求的AI音乐生成平台,提供“零门槛创作 专业级输出”的服务。无论你是内容创作者、音乐人、游戏开发者还是教育工作者,都能通过EasyMusic.ai快速生成高品质音乐,满足短视频、游戏、广告、教育等多元需求。平台支持一键生成与深度定制,积累了超10万创作者,生成超100万首音乐作品,用户满意度达99%。
    12次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码