当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 机器学习中的正则化:解析正则化概念

机器学习中的正则化:解析正则化概念

来源:网易伏羲 2024-01-23 15:52:22 0浏览 收藏

编程并不是一个机械性的工作,而是需要有思考,有创新的工作,语法是固定的,但解决问题的思路则是依靠人的思维,这就需要我们坚持学习和更新自己的知识。今天golang学习网就整理分享《机器学习中的正则化:解析正则化概念》,文章讲解的知识点主要包括,如果你对科技周边方面的知识点感兴趣,就不要错过golang学习网,在这可以对大家的知识积累有所帮助,助力开发能力的提升。

机器学习中正则化是什么意思?正则化的概念详解

在机器学习中,正则化是一种用于防止模型过度拟合的技术。通过对模型的系数引入惩罚项,正则化可以限制模型参数的大小,从而提高模型的泛化能力。这种技术可以提高模型的可靠性、速度和准确性。正则化本质上是通过添加额外的参数来限制模型的复杂度,从而防止网络参数过大导致模型过拟合的问题。

正则化会增加偏差吗?

正则化的目的是通过简化估计量来减少估计量的方差,从而提高模型的泛化能力。然而,正则化会以增加偏差的方式来实现这一目标。通常情况下,偏差的增加发生在样本量较少或参数数量较多的情况下,即模型容易过拟合的情况。然而,当正则化正确地应用时,它可以确保引入适量的偏差,从而避免过度拟合的问题。

正则化的作用和意义

正则化的作用和意义是为了防止过度拟合。当发生过拟合时,模型的泛化能力几乎丧失。这意味着该模型只适用于训练数据集,而不能适用于其他数据集。通过正则化,可以通过引入惩罚项来限制模型参数的大小,从而减少模型的复杂度,提高其泛化能力。这样可以使模型更好地适应新的数据集,提高其预测性能和稳定性。

举个例子,正则化可以看作是通过调整参数a来控制偏差和方差之间的平衡。当a的值较高时,模型的系数减小,从而减小方差。逐渐增大的a可以减少方差,避免过拟合,但超过某个阈值后,会引入偏差,导致欠拟合。

正则化的原理

正则化通过向复杂模型添加带有残差平方和(RSS)的惩罚项来发挥作用。以简单的线性回归方程为例。其中Y表示依赖特征或响应。

Y近似为β0+β1X1+β2X2+…+βpXp,X1、X2、…Xp是Y的独立特征或预测变量,β0、β1、…..βn表示不同变量或预测变量(X)的系数估计,它描述了附加到特征的权重大小。

拟合过程包括损失函数、残差平方和(RSS)函数。以最小化损失函数的方式选择系数。

系数将根据训练数据进行调整。如果训练数据中有噪声,就会发现估计的系数不会很好地泛化到未来的数据。这就是正则化发挥作用的地方,将那些训练学习到的估计值缩小并正则化为零。

正则化有哪些类型

dropout

在dropout中,激活的随机数会更有效地训练网络。激活是将输入乘以权重时得到的输出。如果在每一层都删除了激活的特定部分,则没有特定的激活会学习输入模型。这意味着输入模型不会出现任何过度拟合。

批量归一化

批量归一化通过减去批量均值并除以批量标准差来设法归一化前一个激活层的输出。它向每一层引入两个可训练参数,以便标准化输出乘以gamma和beta。gamma和beta的值将通过神经网络找到。通过弱化初始层参数和后面层参数之间的耦合来提高学习率,提高精度,解决协方差漂移问题。

数据扩充

数据扩充涉及使用现有数据创建合成数据,从而增加可用数据的实际数量。通过生成模型在现实世界中可能遇到的数据变化,帮助深度学习模型变得更加精确。

提前停止

使用训练集的一部分作为验证集,并根据该验证集衡量模型的性能。如果此验证集的性能变差,则立即停止对模型的训练。

L1正则化

使用L1正则化技术的回归模型称为套索回归。Lasso回归模型即Least Absolute Shrinkage and Selection Operator,将系数的“绝对值”作为惩罚项添加到损失函数中。

L2正则化

使用L2正则化的回归模型称为岭回归。岭回归模型即Ridge回归,在Ridge回归中系数的平方幅度作为惩罚项添加到损失函数中。

以上就是《机器学习中的正则化:解析正则化概念》的详细内容,更多关于机器学习的资料请关注golang学习网公众号!

版本声明
本文转载于:网易伏羲 如有侵犯,请联系study_golang@163.com删除
高斯混合模型(GMM)的简介与说明高斯混合模型(GMM)的简介与说明
上一篇
高斯混合模型(GMM)的简介与说明
Facial Expression Analysis: Leveraging Transformer-based Multimodal Information Fusion
下一篇
Facial Expression Analysis: Leveraging Transformer-based Multimodal Information Fusion
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    499次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • PandaWiki开源知识库:AI大模型驱动,智能文档与AI创作、问答、搜索一体化平台
    PandaWiki开源知识库
    PandaWiki是一款AI大模型驱动的开源知识库搭建系统,助您快速构建产品/技术文档、FAQ、博客。提供AI创作、问答、搜索能力,支持富文本编辑、多格式导出,并可轻松集成与多来源内容导入。
    61次使用
  • SEO  AI Mermaid 流程图:自然语言生成,文本驱动可视化创作
    AI Mermaid流程图
    SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
    864次使用
  • 搜获客笔记生成器:小红书医美爆款内容AI创作神器
    搜获客【笔记生成器】
    搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
    881次使用
  • iTerms:一站式法律AI工作台,智能合同审查起草与法律问答专家
    iTerms
    iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
    898次使用
  • TokenPony:AI大模型API聚合平台,一站式接入,高效稳定高性价比
    TokenPony
    TokenPony是讯盟科技旗下的AI大模型聚合API平台。通过统一接口接入DeepSeek、Kimi、Qwen等主流模型,支持1024K超长上下文,实现零配置、免部署、极速响应与高性价比的AI应用开发,助力专业用户轻松构建智能服务。
    965次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码