机器学习中的正则化:解析正则化概念
编程并不是一个机械性的工作,而是需要有思考,有创新的工作,语法是固定的,但解决问题的思路则是依靠人的思维,这就需要我们坚持学习和更新自己的知识。今天golang学习网就整理分享《机器学习中的正则化:解析正则化概念》,文章讲解的知识点主要包括,如果你对科技周边方面的知识点感兴趣,就不要错过golang学习网,在这可以对大家的知识积累有所帮助,助力开发能力的提升。

在机器学习中,正则化是一种用于防止模型过度拟合的技术。通过对模型的系数引入惩罚项,正则化可以限制模型参数的大小,从而提高模型的泛化能力。这种技术可以提高模型的可靠性、速度和准确性。正则化本质上是通过添加额外的参数来限制模型的复杂度,从而防止网络参数过大导致模型过拟合的问题。
正则化会增加偏差吗?
正则化的目的是通过简化估计量来减少估计量的方差,从而提高模型的泛化能力。然而,正则化会以增加偏差的方式来实现这一目标。通常情况下,偏差的增加发生在样本量较少或参数数量较多的情况下,即模型容易过拟合的情况。然而,当正则化正确地应用时,它可以确保引入适量的偏差,从而避免过度拟合的问题。
正则化的作用和意义
正则化的作用和意义是为了防止过度拟合。当发生过拟合时,模型的泛化能力几乎丧失。这意味着该模型只适用于训练数据集,而不能适用于其他数据集。通过正则化,可以通过引入惩罚项来限制模型参数的大小,从而减少模型的复杂度,提高其泛化能力。这样可以使模型更好地适应新的数据集,提高其预测性能和稳定性。
举个例子,正则化可以看作是通过调整参数a来控制偏差和方差之间的平衡。当a的值较高时,模型的系数减小,从而减小方差。逐渐增大的a可以减少方差,避免过拟合,但超过某个阈值后,会引入偏差,导致欠拟合。
正则化的原理
正则化通过向复杂模型添加带有残差平方和(RSS)的惩罚项来发挥作用。以简单的线性回归方程为例。其中Y表示依赖特征或响应。
Y近似为β0+β1X1+β2X2+…+βpXp,X1、X2、…Xp是Y的独立特征或预测变量,β0、β1、…..βn表示不同变量或预测变量(X)的系数估计,它描述了附加到特征的权重大小。
拟合过程包括损失函数、残差平方和(RSS)函数。以最小化损失函数的方式选择系数。
系数将根据训练数据进行调整。如果训练数据中有噪声,就会发现估计的系数不会很好地泛化到未来的数据。这就是正则化发挥作用的地方,将那些训练学习到的估计值缩小并正则化为零。
正则化有哪些类型
dropout
在dropout中,激活的随机数会更有效地训练网络。激活是将输入乘以权重时得到的输出。如果在每一层都删除了激活的特定部分,则没有特定的激活会学习输入模型。这意味着输入模型不会出现任何过度拟合。
批量归一化
批量归一化通过减去批量均值并除以批量标准差来设法归一化前一个激活层的输出。它向每一层引入两个可训练参数,以便标准化输出乘以gamma和beta。gamma和beta的值将通过神经网络找到。通过弱化初始层参数和后面层参数之间的耦合来提高学习率,提高精度,解决协方差漂移问题。
数据扩充
数据扩充涉及使用现有数据创建合成数据,从而增加可用数据的实际数量。通过生成模型在现实世界中可能遇到的数据变化,帮助深度学习模型变得更加精确。
提前停止
使用训练集的一部分作为验证集,并根据该验证集衡量模型的性能。如果此验证集的性能变差,则立即停止对模型的训练。
L1正则化
使用L1正则化技术的回归模型称为套索回归。Lasso回归模型即Least Absolute Shrinkage and Selection Operator,将系数的“绝对值”作为惩罚项添加到损失函数中。
L2正则化
使用L2正则化的回归模型称为岭回归。岭回归模型即Ridge回归,在Ridge回归中系数的平方幅度作为惩罚项添加到损失函数中。
以上就是《机器学习中的正则化:解析正则化概念》的详细内容,更多关于机器学习的资料请关注golang学习网公众号!
高斯混合模型(GMM)的简介与说明
- 上一篇
- 高斯混合模型(GMM)的简介与说明
- 下一篇
- Facial Expression Analysis: Leveraging Transformer-based Multimodal Information Fusion
-
- 科技周边 · 人工智能 | 12分钟前 |
- 多模态AI提升图像识别速度方法
- 159浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 | Notion数据库 Relation字段 Rollup字段 Lookup字段 InlineRelation视图
- Notion数据库怎么关联?多库关系设置教程
- 301浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- 贾跃亭:FF将与特斯拉合作FSD技术
- 409浏览 收藏
-
- 科技周边 · 人工智能 | 3小时前 | AdobeFirefly 风格关键词 形状提示 图像补缺 几何形状
- AdobeFirefly形状补缺技巧分享
- 403浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 | AI工具 ai怎么裁剪图片
- XnViewAI裁剪教程详解与技巧
- 281浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3201次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3414次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3444次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4552次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3822次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览

