当前位置:首页 > 文章列表 > 文章 > python教程 > python实现多元线性回归模型的方法是什么?

python实现多元线性回归模型的方法是什么?

来源:网易伏羲 2024-01-25 18:46:27 0浏览 收藏

大家好,我们又见面了啊~本文《python实现多元线性回归模型的方法是什么?》的内容中将会涉及到等等。如果你正在学习文章相关知识,欢迎关注我,以后会给大家带来更多文章相关文章,希望我们能一起进步!下面就开始本文的正式内容~

如何使用python进行多元线性回归模型设计?

多元线性回归是一种广泛应用于数据分析和机器学习的统计模型。它通过使用多个自变量来预测一个或多个因变量的值。在Python中,我们可以使用许多不同的库和框架来实现多元线性回归模型,例如NumPy、Pandas和Scikit-Learn等。

下面,我们将使用Scikit-Learn库来构建一个多元线性回归模型,以预测房屋价格。在这个例子中,我们将使用房价数据集的数据。该数据集包含506个样本和13个自变量,包括城镇犯罪率、房屋平均房间数、房屋年龄等。

首先,我们需要导入所需的库和数据集:

import numpy as np
import pandas as pd
from sklearn.datasets import load_boston

boston = load_boston()
X = pd.DataFrame(boston.data, columns=boston.feature_names)
y = pd.DataFrame(boston.target, columns=['MEDV'])

在这里,我们使用Pandas库将数据集加载到DataFrame对象中,并将自变量和因变量分别存储在X和y中。

接下来,我们需要将数据集分成训练集和测试集。训练集用于拟合模型,而测试集用于评估模型的性能。

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

在这里,我们使用Scikit-Learn库中的train_test_split函数将数据集分成训练集和测试集。我们使用test_size参数指定测试集的大小,并使用random_state参数设置随机种子以确保结果的可重复性。

接下来,我们可以使用线性回归模型来拟合数据集。

from sklearn.linear_model import LinearRegression

regressor = LinearRegression()
regressor.fit(X_train, y_train)

这里,我们使用Scikit-Learn库中的LinearRegression类来创建一个线性回归模型,并使用fit方法来拟合训练数据。

现在,我们可以使用模型来预测测试集中的房屋价格。

y_pred = regressor.predict(X_test)

在这里,我们使用predict方法来预测测试集中的房屋价格。

最后,我们可以使用Scikit-Learn库中的一些评估指标来评估模型的性能。

from sklearn.metrics import mean_squared_error, r2_score

print('Mean squared error: %.2f' % mean_squared_error(y_test, y_pred))
print('Coefficient of determination: %.2f' % r2_score(y_test, y_pred))

在这里,我们使用mean_squared_error函数来计算均方误差,使用r2_score函数来计算决定系数。这些指标可以帮助我们了解模型的性能和准确度。

总之,使用Python进行多元线性回归模型设计可以非常简单。我们只需要导入所需的库和数据集,拟合模型并使用一些评估指标来评估模型的性能。在实际应用中,我们需要对数据进行探索性数据分析、特征工程和模型优化,以获得更好的预测结果。

以上就是《python实现多元线性回归模型的方法是什么?》的详细内容,更多关于机器学习的资料请关注golang学习网公众号!

版本声明
本文转载于:网易伏羲 如有侵犯,请联系study_golang@163.com删除
了解和应用神经网络中的批处理和迭代周期的概念及作用了解和应用神经网络中的批处理和迭代周期的概念及作用
上一篇
了解和应用神经网络中的批处理和迭代周期的概念及作用
利用DRL优化排序算法的指南
下一篇
利用DRL优化排序算法的指南
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 茅茅虫AIGC检测:精准识别AI生成内容,保障学术诚信
    茅茅虫AIGC检测
    茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
    46次使用
  • 赛林匹克平台:科技赛事聚合,赋能AI、算力、量子计算创新
    赛林匹克平台(Challympics)
    探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
    67次使用
  • SEO  笔格AIPPT:AI智能PPT制作,免费生成,高效演示
    笔格AIPPT
    SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
    77次使用
  • 稿定PPT:在线AI演示设计,高效PPT制作工具
    稿定PPT
    告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
    72次使用
  • Suno苏诺中文版:AI音乐创作平台,人人都是音乐家
    Suno苏诺中文版
    探索Suno苏诺中文版,一款颠覆传统音乐创作的AI平台。无需专业技能,轻松创作个性化音乐。智能词曲生成、风格迁移、海量音效,释放您的音乐灵感!
    75次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码