当前位置:首页 > 文章列表 > 文章 > python教程 > python实现多元线性回归模型的方法是什么?

python实现多元线性回归模型的方法是什么?

来源:网易伏羲 2024-01-25 18:46:27 0浏览 收藏

大家好,我们又见面了啊~本文《python实现多元线性回归模型的方法是什么?》的内容中将会涉及到等等。如果你正在学习文章相关知识,欢迎关注我,以后会给大家带来更多文章相关文章,希望我们能一起进步!下面就开始本文的正式内容~

如何使用python进行多元线性回归模型设计?

多元线性回归是一种广泛应用于数据分析和机器学习的统计模型。它通过使用多个自变量来预测一个或多个因变量的值。在Python中,我们可以使用许多不同的库和框架来实现多元线性回归模型,例如NumPy、Pandas和Scikit-Learn等。

下面,我们将使用Scikit-Learn库来构建一个多元线性回归模型,以预测房屋价格。在这个例子中,我们将使用房价数据集的数据。该数据集包含506个样本和13个自变量,包括城镇犯罪率、房屋平均房间数、房屋年龄等。

首先,我们需要导入所需的库和数据集:

import numpy as np
import pandas as pd
from sklearn.datasets import load_boston

boston = load_boston()
X = pd.DataFrame(boston.data, columns=boston.feature_names)
y = pd.DataFrame(boston.target, columns=['MEDV'])

在这里,我们使用Pandas库将数据集加载到DataFrame对象中,并将自变量和因变量分别存储在X和y中。

接下来,我们需要将数据集分成训练集和测试集。训练集用于拟合模型,而测试集用于评估模型的性能。

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

在这里,我们使用Scikit-Learn库中的train_test_split函数将数据集分成训练集和测试集。我们使用test_size参数指定测试集的大小,并使用random_state参数设置随机种子以确保结果的可重复性。

接下来,我们可以使用线性回归模型来拟合数据集。

from sklearn.linear_model import LinearRegression

regressor = LinearRegression()
regressor.fit(X_train, y_train)

这里,我们使用Scikit-Learn库中的LinearRegression类来创建一个线性回归模型,并使用fit方法来拟合训练数据。

现在,我们可以使用模型来预测测试集中的房屋价格。

y_pred = regressor.predict(X_test)

在这里,我们使用predict方法来预测测试集中的房屋价格。

最后,我们可以使用Scikit-Learn库中的一些评估指标来评估模型的性能。

from sklearn.metrics import mean_squared_error, r2_score

print('Mean squared error: %.2f' % mean_squared_error(y_test, y_pred))
print('Coefficient of determination: %.2f' % r2_score(y_test, y_pred))

在这里,我们使用mean_squared_error函数来计算均方误差,使用r2_score函数来计算决定系数。这些指标可以帮助我们了解模型的性能和准确度。

总之,使用Python进行多元线性回归模型设计可以非常简单。我们只需要导入所需的库和数据集,拟合模型并使用一些评估指标来评估模型的性能。在实际应用中,我们需要对数据进行探索性数据分析、特征工程和模型优化,以获得更好的预测结果。

以上就是《python实现多元线性回归模型的方法是什么?》的详细内容,更多关于机器学习的资料请关注golang学习网公众号!

版本声明
本文转载于:网易伏羲 如有侵犯,请联系study_golang@163.com删除
了解和应用神经网络中的批处理和迭代周期的概念及作用了解和应用神经网络中的批处理和迭代周期的概念及作用
上一篇
了解和应用神经网络中的批处理和迭代周期的概念及作用
利用DRL优化排序算法的指南
下一篇
利用DRL优化排序算法的指南
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 千音漫语:智能声音创作助手,AI配音、音视频翻译一站搞定!
    千音漫语
    千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
    105次使用
  • MiniWork:智能高效AI工具平台,一站式工作学习效率解决方案
    MiniWork
    MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
    98次使用
  • NoCode (nocode.cn):零代码构建应用、网站、管理系统,降低开发门槛
    NoCode
    NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
    118次使用
  • 达医智影:阿里巴巴达摩院医疗AI影像早筛平台,CT一扫多筛癌症急慢病
    达医智影
    达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
    109次使用
  • 智慧芽Eureka:更懂技术创新的AI Agent平台,助力研发效率飞跃
    智慧芽Eureka
    智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
    114次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码