使用Python实现随机森林算法的原理和流程(包含完整代码)
哈喽!大家好,很高兴又见面了,我是golang学习网的一名作者,今天由我给大家带来一篇《使用Python实现随机森林算法的原理和流程(包含完整代码)》,本文主要会讲到等等知识点,希望大家一起学习进步,也欢迎大家关注、点赞、收藏、转发! 下面就一起来看看吧!
随机森林算法是一种集成技术,能够使用多个决策树和一种称为Bootstrap和聚合的技术来执行回归和分类任务。这背后的基本思想是结合多个决策树来确定最终输出,而不是依赖于单个决策树。
机器学习中的随机森林
随机森林产生大量分类树。将输入向量放在森林中的每棵树下,以根据输入向量对新对象进行分类。每棵树都分配了一个分类,我们可以将其称为“投票”,最终选择最高票数的分类。
以下阶段将帮助我们了解随机森林算法的工作原理。
第1步:首先从数据集中选择随机样本。
第2步:对于每个样本,该算法将创建一个决策树。然后将获得每个决策树的预测结果。
第3步:将对这一步中的每个预期结果进行投票。
第4步:最后选择得票最多的预测结果作为最终的预测结果。
随机森林方法具有以下优点
- 通过平均或整合不同决策树的输出,它解决了过度拟合的问题。
- 对于范围广泛的数据项,随机森林比单个决策树表现更好。
- 即使缺少大量数据,随机森林算法也能保持高精度。
随机森林的特点
以下是随机森林算法的主要特征:
- 是目前可用的最准确的算法。
- 适用于庞大的数据库。
- 可以处理数以万计的输入变量,且不用删除其中任何一个变量。
- 随着森林的增长,它会生成泛化误差的内部无偏估计。
- 即使在大量数据丢失的情况下也能保持其准确性。
- 它包括用于平衡类人群中不均匀数据集的不准确性的方法。
- 创建的森林可以在将来保存并用于其他数据。
- 创建原型以显示变量和分类之间的关系。
- 它计算示例对之间的距离,这对于聚类、检测异常值或提供引人入胜的数据视图(按比例)很有用。
- 未标记的数据可用于使用上述功能创建无监督聚类、数据可视化和异常值识别。
随机森林有多个决策树作为基础学习模型。我们从数据集中随机执行行采样和特征采样,形成每个模型的样本数据集。这部分称为引导程序。
如何使用随机森林回归技术
- 设计一个特定的问题或数据并获取源以确定所需的数据。
- 确保数据是可访问的格式,否则将其转换为所需的格式。
- 指定获得所需数据可能需要的所有明显异常和缺失数据点。
- 创建机器学习模型。
- 设置想要实现的基线模型
- 训练数据机器学习模型。
- 使用测试数据提供对模型的洞察
- 现在比较测试数据和模型预测数据的性能指标。
- 如果它不能满足,可以尝试相应地改进模型或者使用其他数据建模技术。
- 在这个阶段,解释获得的数据并相应地报告。
Python实现随机森林算法流程
第1步:导入所需的库。
import numpy as np import matplotlib.pyplot as plt import pandas as pd
第2步:导入并打印数据集
ata=pd.read_csv('Salaries.csv')
print(data)第3步:从数据集中选择所有行和第1列到x,选择所有行和第2列作为y
x=df.iloc[:,:-1]#”:”表示将选择所有行,“:-1”表示将忽略最后一列
y=df.iloc[:,-1:]#”:”表示它将选择所有行,“-1:”表示它将忽略除最后一列之外的所有列
#“iloc()”函数使我们能够选择数据集的特定单元格,也就是说,它帮助我们从数据框或数据集的一组值中选择属于特定行或列的值。
第4步:将随机森林回归器拟合到数据集
from sklearn.ensemble import RandomForestRegressor regressor=RandomForestRegressor(n_estimators=100,random_state=0) regressor.fit(x,y)
第5步:预测新结果
Y_pred=regressor.predict(np.array([6.5]).reshape(1,1))
第6步:可视化结果

X_grid=np.arrange(min(x),max(x),0.01)
X_grid=X_grid.reshape((len(X_grid),1))
plt.scatter(x,y,color='blue')
plt.plot(X_grid,regressor.predict(X_grid),
color='green')
plt.title('Random Forest Regression')
plt.xlabel('Position level')
plt.ylabel('Salary')
plt.show()今天关于《使用Python实现随机森林算法的原理和流程(包含完整代码)》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!
-
- 文章 · python教程 | 40分钟前 |
- Python字符串查找方法有哪些?
- 360浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- VSCode扩展安装失败解决方法
- 288浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- 多摄像头RGB与深度对齐方法解析
- 272浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Tkinter检测焦点Entry方法
- 407浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- PythonSocket多客户端并发与信号处理详解
- 405浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- PythonTurtle画垂直椭圆详细教程
- 425浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- KivyiOS导入Numpy错误解决方法
- 272浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Pythonjsonpath提取数据教程详解
- 478浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python类方法数据共享与传递技巧
- 142浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3214次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3429次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3459次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4567次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3835次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

无偏条件随机场模型
