学习SORT跟踪算法(使用Python实现的简单SORT跟踪算法示例)
亲爱的编程学习爱好者,如果你点开了这篇文章,说明你对《学习SORT跟踪算法(使用Python实现的简单SORT跟踪算法示例)》很感兴趣。本篇文章就来给大家详细解析一下,主要介绍一下,希望所有认真读完的童鞋们,都有实质性的提高。

SORT(Simple Online and Realtime Tracking)是一种基于卡尔曼滤波的目标跟踪算法,它可以在实时场景中对移动目标进行鲁棒跟踪。SORT算法最初是由Alex Bewley等人在2016年提出的,它已被广泛应用于计算机视觉领域的各种应用中,例如视频监控、自动驾驶、机器人导航等。
SORT算法主要基于两个核心思想:卡尔曼滤波和匈牙利算法。卡尔曼滤波是一种用于估计系统状态的算法,它可以利用系统的动态模型和传感器测量值,对系统状态进行预测和更新,从而提高状态估计的准确性。匈牙利算法是一种用于解决二分图最大权匹配问题的算法,它可以在给定一个二分图的情况下,找到最大权匹配。
SORT算法的主要步骤如下:
目标检测:使用目标检测算法(如YOLO、SSD等)提取当前帧中的目标信息。
状态预测:对于每个已经跟踪的目标,利用卡尔曼滤波对其状态进行预测。
数据关联:根据预测状态和当前帧中的目标信息,使用匈牙利算法进行数据关联,找到每个已经跟踪的目标在当前帧中对应的目标。
状态更新:对于每个已经跟踪的目标,利用卡尔曼滤波对其状态进行更新。
目标输出:输出每个已经跟踪的目标的状态信息和跟踪结果。
在计算机视觉中,SORT算法可以应用于各种目标跟踪场景。例如,在视频监控中,SORT算法可以对移动目标进行实时跟踪,从而实现对场景中的异常行为进行检测和预警。在自动驾驶领域,SORT算法可以对其他车辆、行人等交通参与者进行跟踪,从而实现车辆的自主导航和避障。在机器人导航中,SORT算法可以对移动目标进行跟踪,从而实现机器人的自主导航和避障。
以下是一个使用Python实现的简单示例代码:
#python
import numpy as np
from filterpy.kalman import KalmanFilter
from scipy.optimize import linear_sum_assignment
class Track:
def init(self,prediction,track_id,track_lifetime):
self.prediction=np.atleast_2d(prediction)
self.track_id=track_id
self.track_lifetime=track_lifetime
self.age=0
self.total_visible_count=1
self.consecutive_invisible_count=0
def predict(self, kf):
self.prediction = kf.predict()
self.age += 1
def update(self, detection, kf):
self.prediction = kf.update(detection)
self.total_visible_count += 1
self.consecutive_invisible_count = 0
def mark_missed(self):
self.consecutive_invisible_count += 1
def is_dead(self):
return self.consecutive_invisible_count >= self.track_lifetime
class Tracker:
def init(self,track_lifetime,detection_variance,process_variance):
self.next_track_id=0
self.tracks=[]
self.track_lifetime=track_lifetime
self.detection_variance=detection_variance
self.process_variance=process_variance
self.kf=KalmanFilter(dim_x=4,dim_z=2)
self.kf.F=np.array([[1,0,1,0],
[0,1,0,1],
[0,0,1,0],
[0,0,0,1]])
self.kf.H=np.array([[1,0,0,0],
[0,1,0,0]])
self.kf.R=np.array([[self.detection_variance,0],
[0,self.detection_variance]])
self.kf.Q=np.array([[self.process_variance,0,0,0],
[0,self.process_variance,0,0],
[0,0,self.process_variance,0],
[0,0,0,self.process_variance]])
def update(self, detections):
# predict track positions using Kalman filter
for track in self.tracks:
track.predict(self.kf)
# associate detections with tracks using Hungarian algorithm
if len(detections) > 0:
num_tracks = len(self.tracks)
num_detections = len(detections)
cost_matrix = np.zeros((num_tracks, num_detections))
for i, track in enumerate(self.tracks):
for j, detection in enumerate(detections):
diff = track.prediction - detection
distance = np.sqrt(diff[0,0]**2 + diff[0,1]**2)
cost_matrix[i,j] = distance
row_indices, col_indices = linear_sum_assignment(cost_matrix)
unassigned_tracks = set(range(num_tracks)) - set(row_indices)
unassigned_detections = set(range(num_detections)) - set(col_indices)
for i, j in zip(row_indices, col_indices):
self.tracks[i].update(detections[j], self.kf)
for i in unassigned_tracks:
self.tracks[i].mark_missed()
for j in unassigned_detections:
new_track = Track(detections[j], self.next_track_id, self.track_lifetime)
self.tracks.append(new_track)
self.next_track_id += 1
# remove dead tracks
self.tracks = [track for track in self.tracks if not track.is_dead()]
# return list of track positions
return [track.prediction.tolist()[0] for track in self.tracks]以上代码实现了一个简单的SORT跟踪算法,使用Kalman滤波器对目标位置和速度进行预测和估计,然后使用匈牙利算法对目标进行关联,最后根据目标的连续不可见次数判断目标是否死亡并移除死亡的目标。以上代码实现了一个简单的SORT跟踪算法,使用Kalman滤波器对目标位置和速度进行预测和估计,然后使用匈牙利算法对目标进行关联,最后根据目标的连续不可见次数判断目标是否死亡并移除死亡的目标。
除了SORT算法之外,还有许多其他的目标跟踪算法,如卡尔曼滤波、粒子滤波、多目标跟踪等。每种算法都有其适用的场景和优缺点。在实际应用中,需要根据具体场景和需求选择合适的算法进行目标跟踪。
好了,本文到此结束,带大家了解了《学习SORT跟踪算法(使用Python实现的简单SORT跟踪算法示例)》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多文章知识!
如何在winform中实现多线程给一个文本框赋值
- 上一篇
- 如何在winform中实现多线程给一个文本框赋值
- 下一篇
- Python实现洗牌算法的运行规则
-
- 文章 · python教程 | 38分钟前 |
- NumPy位异或归约操作全解析
- 259浏览 收藏
-
- 文章 · python教程 | 56分钟前 |
- Python遍历读取所有文件技巧
- 327浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python中index的作用及使用方法
- 358浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python快速访问嵌套字典键值对
- 340浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python中ch代表字符的用法解析
- 365浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- NumPy1D近邻查找:向量化优化技巧
- 391浏览 收藏
-
- 文章 · python教程 | 2小时前 | 正则表达式 字符串操作 re模块 Python文本处理 文本清洗
- Python正则表达式实战教程详解
- 392浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- BehaveFixture临时目录管理技巧
- 105浏览 收藏
-
- 文章 · python教程 | 3小时前 | Python 余数 元组 divmod()函数 商
- divmod函数详解与使用技巧
- 442浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Python多进程共享字符串内存技巧
- 291浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3203次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3416次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3446次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4554次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3824次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

