学习SORT跟踪算法(使用Python实现的简单SORT跟踪算法示例)
亲爱的编程学习爱好者,如果你点开了这篇文章,说明你对《学习SORT跟踪算法(使用Python实现的简单SORT跟踪算法示例)》很感兴趣。本篇文章就来给大家详细解析一下,主要介绍一下,希望所有认真读完的童鞋们,都有实质性的提高。
SORT(Simple Online and Realtime Tracking)是一种基于卡尔曼滤波的目标跟踪算法,它可以在实时场景中对移动目标进行鲁棒跟踪。SORT算法最初是由Alex Bewley等人在2016年提出的,它已被广泛应用于计算机视觉领域的各种应用中,例如视频监控、自动驾驶、机器人导航等。
SORT算法主要基于两个核心思想:卡尔曼滤波和匈牙利算法。卡尔曼滤波是一种用于估计系统状态的算法,它可以利用系统的动态模型和传感器测量值,对系统状态进行预测和更新,从而提高状态估计的准确性。匈牙利算法是一种用于解决二分图最大权匹配问题的算法,它可以在给定一个二分图的情况下,找到最大权匹配。
SORT算法的主要步骤如下:
目标检测:使用目标检测算法(如YOLO、SSD等)提取当前帧中的目标信息。
状态预测:对于每个已经跟踪的目标,利用卡尔曼滤波对其状态进行预测。
数据关联:根据预测状态和当前帧中的目标信息,使用匈牙利算法进行数据关联,找到每个已经跟踪的目标在当前帧中对应的目标。
状态更新:对于每个已经跟踪的目标,利用卡尔曼滤波对其状态进行更新。
目标输出:输出每个已经跟踪的目标的状态信息和跟踪结果。
在计算机视觉中,SORT算法可以应用于各种目标跟踪场景。例如,在视频监控中,SORT算法可以对移动目标进行实时跟踪,从而实现对场景中的异常行为进行检测和预警。在自动驾驶领域,SORT算法可以对其他车辆、行人等交通参与者进行跟踪,从而实现车辆的自主导航和避障。在机器人导航中,SORT算法可以对移动目标进行跟踪,从而实现机器人的自主导航和避障。
以下是一个使用Python实现的简单示例代码:
#python import numpy as np from filterpy.kalman import KalmanFilter from scipy.optimize import linear_sum_assignment class Track: def init(self,prediction,track_id,track_lifetime): self.prediction=np.atleast_2d(prediction) self.track_id=track_id self.track_lifetime=track_lifetime self.age=0 self.total_visible_count=1 self.consecutive_invisible_count=0 def predict(self, kf): self.prediction = kf.predict() self.age += 1 def update(self, detection, kf): self.prediction = kf.update(detection) self.total_visible_count += 1 self.consecutive_invisible_count = 0 def mark_missed(self): self.consecutive_invisible_count += 1 def is_dead(self): return self.consecutive_invisible_count >= self.track_lifetime class Tracker: def init(self,track_lifetime,detection_variance,process_variance): self.next_track_id=0 self.tracks=[] self.track_lifetime=track_lifetime self.detection_variance=detection_variance self.process_variance=process_variance self.kf=KalmanFilter(dim_x=4,dim_z=2) self.kf.F=np.array([[1,0,1,0], [0,1,0,1], [0,0,1,0], [0,0,0,1]]) self.kf.H=np.array([[1,0,0,0], [0,1,0,0]]) self.kf.R=np.array([[self.detection_variance,0], [0,self.detection_variance]]) self.kf.Q=np.array([[self.process_variance,0,0,0], [0,self.process_variance,0,0], [0,0,self.process_variance,0], [0,0,0,self.process_variance]]) def update(self, detections): # predict track positions using Kalman filter for track in self.tracks: track.predict(self.kf) # associate detections with tracks using Hungarian algorithm if len(detections) > 0: num_tracks = len(self.tracks) num_detections = len(detections) cost_matrix = np.zeros((num_tracks, num_detections)) for i, track in enumerate(self.tracks): for j, detection in enumerate(detections): diff = track.prediction - detection distance = np.sqrt(diff[0,0]**2 + diff[0,1]**2) cost_matrix[i,j] = distance row_indices, col_indices = linear_sum_assignment(cost_matrix) unassigned_tracks = set(range(num_tracks)) - set(row_indices) unassigned_detections = set(range(num_detections)) - set(col_indices) for i, j in zip(row_indices, col_indices): self.tracks[i].update(detections[j], self.kf) for i in unassigned_tracks: self.tracks[i].mark_missed() for j in unassigned_detections: new_track = Track(detections[j], self.next_track_id, self.track_lifetime) self.tracks.append(new_track) self.next_track_id += 1 # remove dead tracks self.tracks = [track for track in self.tracks if not track.is_dead()] # return list of track positions return [track.prediction.tolist()[0] for track in self.tracks]
以上代码实现了一个简单的SORT跟踪算法,使用Kalman滤波器对目标位置和速度进行预测和估计,然后使用匈牙利算法对目标进行关联,最后根据目标的连续不可见次数判断目标是否死亡并移除死亡的目标。以上代码实现了一个简单的SORT跟踪算法,使用Kalman滤波器对目标位置和速度进行预测和估计,然后使用匈牙利算法对目标进行关联,最后根据目标的连续不可见次数判断目标是否死亡并移除死亡的目标。
除了SORT算法之外,还有许多其他的目标跟踪算法,如卡尔曼滤波、粒子滤波、多目标跟踪等。每种算法都有其适用的场景和优缺点。在实际应用中,需要根据具体场景和需求选择合适的算法进行目标跟踪。
好了,本文到此结束,带大家了解了《学习SORT跟踪算法(使用Python实现的简单SORT跟踪算法示例)》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多文章知识!

- 上一篇
- 如何在winform中实现多线程给一个文本框赋值

- 下一篇
- Python实现洗牌算法的运行规则
-
- 文章 · python教程 | 36分钟前 |
- PyCharm没找到解释器?手把手教你快速配置interpreter
- 412浏览 收藏
-
- 文章 · python教程 | 38分钟前 |
- Python中ans是什么意思?可能是“answer”也可能是其他用法
- 205浏览 收藏
-
- 文章 · python教程 | 49分钟前 |
- PyCharm激活窗口怎么开?手把手教学带你轻松找到激活入口
- 357浏览 收藏
-
- 文章 · python教程 | 59分钟前 |
- PyCharm激活码怎么获取?手把手教你轻松激活
- 351浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python进阶:int整数类型全解,从此摸清底层逻辑
- 132浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- PyCharm新手教程:手把手教你快速创建项目(附详细步骤)
- 154浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Pythonprint函数怎么用?手把手教你玩转print函数
- 134浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Pythoninput()函数怎么用?手把手教你搞定输入函数
- 257浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- 手把手教学!小白轻松学会配置Python环境变量
- 436浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python中的type是什么意思?手把手教你搞定Type函数
- 194浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Pythonabs函数详解:手把手教你搞定绝对值计算
- 321浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Pythondef函数定义语法大解析,def关键字全方面讲解
- 290浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 茅茅虫AIGC检测
- 茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
- 33次使用
-
- 赛林匹克平台(Challympics)
- 探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
- 56次使用
-
- 笔格AIPPT
- SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
- 65次使用
-
- 稿定PPT
- 告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
- 61次使用
-
- Suno苏诺中文版
- 探索Suno苏诺中文版,一款颠覆传统音乐创作的AI平台。无需专业技能,轻松创作个性化音乐。智能词曲生成、风格迁移、海量音效,释放您的音乐灵感!
- 64次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览