Ford-Fulkerson算法原理详解及Python实现方案
来源:网易伏羲
2024-02-02 09:38:27
0浏览
收藏
哈喽!今天心血来潮给大家带来了《Ford-Fulkerson算法原理详解及Python实现方案》,想必大家应该对文章都不陌生吧,那么阅读本文就都不会很困难,以下内容主要涉及到,若是你正在学习文章,千万别错过这篇文章~希望能帮助到你!
Ford-Fulkerson算法是贪心算法,用于计算网络中的最大流量。其原理是找到剩余容量为正的增广路径,只要找到增广路径,就可以继续增加路径和计算流量。直到增广路径不再存在,这时就能得出最大流量。
Ford-Fulkerson算法的术语
剩余容量:就是将容量减去流量,在Ford-Fulkerson算法中剩余容量是正数,才能继续作为路径。
残差网络:是一个具有相同顶点和边的网络,使用残差容量作为容量。
增广路径:是残差图中从源点到接收点的路径,最终容量为0。
Ford-Fulkerson算法原理示例
可能概念不是很清晰,下面来看一个示例,流网络所有边的初始流量均为0,并有对应的容量上限,设起始点为S,接收点为T。

路径一,S-A-B-T路径剩余容量为8、9、2,最小值为2,因此路径一的流量为2,这时网络图的流量为2。

路径二,S-D-C-T路径剩余容量为3、4、5,最小值为3,因此我们可以将流量增加3,这时网络的流量为5。

路径三,S-A-B-D-C-T路径剩余容量为6、7、7、1、2,最小值为1,因此流量增加1,这时网络的流量为6。

至此,已经没有为正数的剩余容量,得出该流网络的最大流是6。
Python实现Ford-Fulkerson算法
from collections import defaultdict class Graph: def __init__(self, graph): self.graph = graph self. ROW = len(graph) def searching_algo_BFS(self, s, t, parent): visited = [False] * (self.ROW) queue = [] queue.append(s) visited[s] = True while queue: u = queue.pop(0) for ind, val in enumerate(self.graph[u]): if visited[ind] == False and val > 0: queue.append(ind) visited[ind] = True parent[ind] = u return True if visited[t] else False def ford_fulkerson(self, source, sink): parent = [-1] * (self.ROW) max_flow = 0 while self.searching_algo_BFS(source, sink, parent): path_flow = float("Inf") s = sink while(s != source): path_flow = min(path_flow, self.graph[parent[s]][s]) s = parent[s] max_flow += path_flow v = sink while(v != source): u = parent[v] self.graph[u][v] -= path_flow self.graph[v][u] += path_flow v = parent[v] return max_flow graph = [[0, 8, 0, 0, 3, 0], [0, 0, 9, 0, 0, 0], [0, 0, 0, 0, 7, 2], [0, 0, 0, 0, 0, 5], [0, 0, 7, 4, 0, 0], [0, 0, 0, 0, 0, 0]] g = Graph(graph) source = 0 sink = 5 print("Max Flow: %d " % g.ford_fulkerson(source, sink))
今天关于《Ford-Fulkerson算法原理详解及Python实现方案》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!
版本声明
本文转载于:网易伏羲 如有侵犯,请联系study_golang@163.com删除

- 上一篇
- 使用PHP和Selenium实际示例展示如何自动生成爬虫

- 下一篇
- 优化Linux系统以适应大数据处理和分析
查看更多
最新文章
-
- 文章 · python教程 | 2分钟前 |
- Pythonwhile循环详解与使用技巧
- 391浏览 收藏
-
- 文章 · python教程 | 4分钟前 |
- Python数据版本控制:DVC工具使用教程
- 226浏览 收藏
-
- 文章 · python教程 | 10分钟前 |
- Python操作HDF5教程:h5py库使用全解析
- 115浏览 收藏
-
- 文章 · python教程 | 13分钟前 |
- Python查找国家ISO代码方法教程
- 491浏览 收藏
-
- 文章 · python教程 | 29分钟前 |
- numpy是什么?Python数值计算库全解析
- 272浏览 收藏
-
- 文章 · python教程 | 33分钟前 |
- Pythonurllib3发送HTTP请求教程
- 195浏览 收藏
-
- 文章 · python教程 | 40分钟前 |
- Python日志不显示INFO解决方法
- 439浏览 收藏
-
- 文章 · python教程 | 55分钟前 |
- Python魔法方法全解析:__init__等实用技巧
- 307浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- PythonKMeans数据聚类教程
- 401浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
查看更多
AI推荐
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 179次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 177次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 180次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 187次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 201次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览