当前位置:首页 > 文章列表 > 数据库 > MySQL > 详解B树删除操作:使用Python实现的B树删除操作图解

详解B树删除操作:使用Python实现的B树删除操作图解

来源:网易伏羲 2024-01-26 13:26:01 0浏览 收藏

大家好,我们又见面了啊~本文《详解B树删除操作:使用Python实现的B树删除操作图解》的内容中将会涉及到等等。如果你正在学习数据库相关知识,欢迎关注我,以后会给大家带来更多数据库相关文章,希望我们能一起进步!下面就开始本文的正式内容~

B树删除操作需要考虑节点所在位置和平衡,并且很有可能会发生下溢的情况。当一个节点包含的子节点数量少于它应该持有的最小数量时,就会发生下溢。

图文展示B树删除操作原理

在不影响平衡情况下。

B树删除操作详细图解 Python实现B树删除操作

下溢情况。

B树删除操作详细图解 Python实现B树删除操作

删除内部节点。

B树删除操作详细图解 Python实现B树删除操作

Python实现B树删除操作

# B树节点
class BTreeNode:
    def __init__(self, leaf=False):
        self.leaf = leaf
        self.keys = []
        self.child = []

class BTree:
    def __init__(self, t):
        self.root = BTreeNode(True)
        self.t = t

    # 插入元素
    def insert(self, k):
        root = self.root
        if len(root.keys) == (2 * self.t) - 1:
            temp = BTreeNode()
            self.root = temp
            temp.child.insert(0, root)
            self.split_child(temp, 0)
            self.insert_non_full(temp, k)
        else:
            self.insert_non_full(root, k)

    def insert_non_full(self, x, k):
        i = len(x.keys) - 1
        if x.leaf:
            x.keys.append((None, None))
            while i >= 0 and k[0] < x.keys[i][0]:
                x.keys[i + 1] = x.keys[i]
                i -= 1
            x.keys[i + 1] = k
        else:
            while i >= 0 and k[0] < x.keys[i][0]:
                i -= 1
            i += 1
            if len(x.child[i].keys) == (2 * self.t) - 1:
                self.split_child(x, i)
                if k[0] > x.keys[i][0]:
                    i += 1
            self.insert_non_full(x.child[i], k)

    # 分开子节点
    def split_child(self, x, i):
        t = self.t
        y = x.child[i]
        z = BTreeNode(y.leaf)
        x.child.insert(i + 1, z)
        x.keys.insert(i, y.keys[t - 1])
        z.keys = y.keys[t: (2 * t) - 1]
        y.keys = y.keys[0: t - 1]
        if not y.leaf:
            z.child = y.child[t: 2 * t]
            y.child = y.child[0: t - 1]

    # 删除节点
    def delete(self, x, k):
        t = self.t
        i = 0
        while i < len(x.keys) and k[0] > x.keys[i][0]:
            i += 1
        if x.leaf:
            if i < len(x.keys) and x.keys[i][0] == k[0]:
                x.keys.pop(i)
                return
            return

        if i < len(x.keys) and x.keys[i][0] == k[0]:
            return self.delete_internal_node(x, k, i)
        elif len(x.child[i].keys) >= t:
            self.delete(x.child[i], k)
        else:
            if i != 0 and i + 2 < len(x.child):
                if len(x.child[i - 1].keys) >= t:
                    self.delete_sibling(x, i, i - 1)
                elif len(x.child[i + 1].keys) >= t:
                    self.delete_sibling(x, i, i + 1)
                else:
                    self.delete_merge(x, i, i + 1)
            elif i == 0:
                if len(x.child[i + 1].keys) >= t:
                    self.delete_sibling(x, i, i + 1)
                else:
                    self.delete_merge(x, i, i + 1)
            elif i + 1 == len(x.child):
                if len(x.child[i - 1].keys) >= t:
                    self.delete_sibling(x, i, i - 1)
                else:
                    self.delete_merge(x, i, i - 1)
            self.delete(x.child[i], k)

    # 删除节点
    def delete_internal_node(self, x, k, i):
        t = self.t
        if x.leaf:
            if x.keys[i][0] == k[0]:
                x.keys.pop(i)
                return
            return

        if len(x.child[i].keys) >= t:
            x.keys[i] = self.delete_predecessor(x.child[i])
            return
        elif len(x.child[i + 1].keys) >= t:
            x.keys[i] = self.delete_successor(x.child[i + 1])
            return
        else:
            self.delete_merge(x, i, i + 1)
            self.delete_internal_node(x.child[i], k, self.t - 1)

    # 删除前节点
    def delete_predecessor(self, x):
        if x.leaf:
            return x.pop()
        n = len(x.keys) - 1
        if len(x.child[n].keys) >= self.t:
            self.delete_sibling(x, n + 1, n)
        else:
            self.delete_merge(x, n, n + 1)
        self.delete_predecessor(x.child[n])

    # 删除继任节点
    def delete_successor(self, x):
        if x.leaf:
            return x.keys.pop(0)
        if len(x.child[1].keys) >= self.t:
            self.delete_sibling(x, 0, 1)
        else:
            self.delete_merge(x, 0, 1)
        self.delete_successor(x.child[0])

    def delete_merge(self, x, i, j):
        cnode = x.child[i]

        if j > i:
            rsnode = x.child[j]
            cnode.keys.append(x.keys[i])
            for k in range(len(rsnode.keys)):
                cnode.keys.append(rsnode.keys[k])
                if len(rsnode.child) > 0:
                    cnode.child.append(rsnode.child[k])
            if len(rsnode.child) > 0:
                cnode.child.append(rsnode.child.pop())
            new = cnode
            x.keys.pop(i)
            x.child.pop(j)
        else:
            lsnode = x.child[j]
            lsnode.keys.append(x.keys[j])
            for i in range(len(cnode.keys)):
                lsnode.keys.append(cnode.keys[i])
                if len(lsnode.child) > 0:
                    lsnode.child.append(cnode.child[i])
            if len(lsnode.child) > 0:
                lsnode.child.append(cnode.child.pop())
            new = lsnode
            x.keys.pop(j)
            x.child.pop(i)

        if x == self.root and len(x.keys) == 0:
            self.root = new

    # 删除同一级的其他子节点
    def delete_sibling(self, x, i, j):
        cnode = x.child[i]
        if i < j:
            rsnode = x.child[j]
            cnode.keys.append(x.keys[i])
            x.keys[i] = rsnode.keys[0]
            if len(rsnode.child) > 0:
                cnode.child.append(rsnode.child[0])
                rsnode.child.pop(0)
            rsnode.keys.pop(0)
        else:
            lsnode = x.child[j]
            cnode.keys.insert(0, x.keys[i - 1])
            x.keys[i - 1] = lsnode.keys.pop()
            if len(lsnode.child) > 0:
                cnode.child.insert(0, lsnode.child.pop())

    # 输出B树
    def print_tree(self, x, l=0):
        print("Level ", l, " ", len(x.keys), end=":")
        for i in x.keys:
            print(i, end=" ")
        print()
        l += 1
        if len(x.child) > 0:
            for i in x.child:
                self.print_tree(i, l)

B = BTree(3)

for i in range(10):
    B.insert((i, 2 * i))

B.print_tree(B.root)
B.delete(B.root, (8,))
print("\n")
B.print_tree(B.root)

到这里,我们也就讲完了《详解B树删除操作:使用Python实现的B树删除操作图解》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于B树的概念的知识点!

版本声明
本文转载于:网易伏羲 如有侵犯,请联系study_golang@163.com删除
使用PHP开发的OpenShift容器应用平台开源实现使用PHP开发的OpenShift容器应用平台开源实现
上一篇
使用PHP开发的OpenShift容器应用平台开源实现
介绍使用PHP和Selenium实现网络爬虫的关键技巧
下一篇
介绍使用PHP和Selenium实现网络爬虫的关键技巧
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    14次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    22次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    30次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    39次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    35次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码