Python 装饰器浅析
各位小伙伴们,大家好呀!看看今天我又给各位带来了什么文章?本文标题是《Python 装饰器浅析》,很明显是关于文章的文章哈哈哈,其中内容主要会涉及到等等,如果能帮到你,觉得很不错的话,欢迎各位多多点评和分享!
Python 是一种对新手很友好的语言。但是,它也有很多较难掌握的高级功能,比如装饰器(decorator)。很多初学者一直不理解装饰器及其工作原理,在这篇文章中,我们将介绍装饰器的来龙去脉。
在 Python 中,函数是一种非常灵活的结构,我们可以把它赋值给变量、当作参数传递给另一个函数,或者当成某个函数的输出。装饰器本质上也是一种函数,它可以让其它函数在不经过修改的情况下增加一些功能。
这也就是「装饰」的意义,这种「装饰」本身代表着一种功能,如果用它修饰不同的函数,那么也就是为这些函数增加这种功能。
一般而言,我们可以使用装饰器提供的 @ 语法糖(Syntactic Sugar)来修饰其它函数或对象。如下所示我们用 @dec 装饰器修饰函数 func ():
@dec def func(): pass
理解装饰器的最好方式是了解装饰器解决什么问题,本文将从具体问题出发一步步引出装饰器,并展示它的优雅与强大。
设置问题
为了解装饰器的目的,接下来我们来看一个简单的示例。假如你有一个简单的加法函数 dec.py,第二个参数的默认值为 10:
# dec.py def add(x, y=10): return x + y
我们来更认真地看一下这个加法函数:
>>> add(10, 20) 30 >>> add>>> add.__name__ 'add' >>> add.__module__ '__main__' >>> add.__defaults__ # default value of the `add` function (10,) >>> add.__code__.co_varnames # the variable names of the `add` function ('x', 'y')
我们无需理解这些都是什么,只需要记住 Python 中的每个函数都是对象,它们有各种属性和方法。你还可以通过 inspect 模块查看 add() 函数的源代码:
>>> from inspect import getsource >>> print(getsource(add)) def add(x, y=10): return x + y
现在你以某种方式使用该加法函数,比如你使用一些操作来测试该函数:
# dec.py from time import time def add(x, y=10): return x + y print('add(10)', add(10)) print('add(20, 30)', add(20, 30)) print('add("a", "b")', add("a", "b")) Output: i add(10) 20 add(20, 30) 50 add("a", "b") ab
假如你想了解每个操作的时间,可以调用 time 模块:
# dec.py from time import time def add(x, y=10): return x + y before = time() print('add(10)', add(10)) after = time() print('time taken: ', after - before) before = time() print('add(20, 30)', add(20, 30)) after = time() print('time taken: ', after - before) before = time() print('add("a", "b")', add("a", "b")) after = time() print('time taken: ', after - before) Output: add(10) 20 time taken:6.699562072753906e-05 add(20, 30) 50 time taken:6.9141387939453125e-06 add("a", "b") ab time taken:6.9141387939453125e-06
现在,你作为一个编程人员是不是有些手痒,毕竟我们不喜欢总是复制粘贴相同的代码。现在的代码可读性不强,如果你想改变什么,你就得修改所有出现的地方,Python 肯定有更好的方式。
我们可以按照如下做法,直接在 add 函数中捕捉运行时间:
# dec.py from time import time def add(x, y=10): before = time() rv = x + y after = time() print('time taken: ', after - before) return rv print('add(10)', add(10)) print('add(20, 30)', add(20, 30)) print('add("a", "b")', add("a", "b"))
这种方法肯定比前一种要好。但是如果你还有另一个函数,那么这似乎就不方便了。当我们有多个函数时:
# dec.py from time import time def add(x, y=10): before = time() rv = x + y after = time() print('time taken: ', after - before) return rv def sub(x, y=10): return x - y print('add(10)', add(10)) print('add(20, 30)', add(20, 30)) print('add("a", "b")', add("a", "b")) print('sub(10)', sub(10)) print('sub(20, 30)', sub(20, 30))
因为 add 和 sub 都是函数,我们可以利用这一点写一个 timer 函数。我们希望 timer 能计算一个函数的运算时间:
def timer(func, x, y=10): before = time() rv = func(x, y) after = time() print('time taken: ', after - before) return rv
这很不错,不过我们必须使用 timer 函数包装不同的函数,如下所示:
print('add(10)', timer(add,10)))
现在默认值还是 10 吗?未必。那么如何做得更好呢?
这里有一个主意:创建一个新的 timer 函数,并包装其他函数,然后返回包装后的函数:
def timer(func): def f(x, y=10): before = time() rv = func(x, y) after = time() print('time taken: ', after - before) return rv return f
现在,你只需用 timer 包装一下 add 和 sub 函数 :
add = timer(add)
这样就可以了!以下是完整代码:
# dec.py from time import time def timer(func): def f(x, y=10): before = time() rv = func(x, y) after = time() print('time taken: ', after - before) return rv return f def add(x, y=10): return x + y add = timer(add) def sub(x, y=10): return x - y sub = timer(sub) print('add(10)', add(10)) print('add(20, 30)', add(20, 30)) print('add("a", "b")', add("a", "b")) print('sub(10)', sub(10)) print('sub(20, 30)', sub(20, 30)) Output: time taken:0.0 add(10) 20 time taken:9.5367431640625e-07 add(20, 30) 50 time taken:0.0 add("a", "b") ab time taken:9.5367431640625e-07 sub(10) 0 time taken:9.5367431640625e-07 sub(20, 30) -10
我们来总结一下这个过程:我们有一个函数(比如 add 函数),然后用一个动作(比如计时)包装该函数。包装的结果是一个新函数,能实现某些新功能。
当然了,默认值还有点问题,稍后我们会解决它。
装饰器
现在,上面的解决方案以及非常接近装饰器的思想了,使用常见行为包装某个具体的函数,这种模式就是装饰器在做的事。使用装饰器后的代码是:
def add(x, y=10): return x + y add = timer(add) You write: @timer def add(x, y=10): return x + y
它们的作用是一样的,这就是 Python 装饰器的作用。它实现的作用类似于 add = timer(add),只不过装饰器把句法放在函数上面,且句法更加简单:@timer。
# dec.py from time import time def timer(func): def f(x, y=10): before = time() rv = func(x, y) after = time() print('time taken: ', after - before) return rv return f @timer def add(x, y=10): return x + y @timer def sub(x, y=10): return x - y print('add(10)', add(10)) print('add(20, 30)', add(20, 30)) print('add("a", "b")', add("a", "b")) print('sub(10)', sub(10)) print('sub(20, 30)', sub(20, 30))
参数和关键字参数
现在,还有一个小问题没有解决。在 timer 函数中,我们将参数 x 和 y 写死了,即指定 y 的默认值为 10。有一种方法可以传输该函数的参数和关键字参数,即 *args 和 **kwargs。参数是函数的标准参数(在本例中 x 为参数),关键字参数是已具备默认值的参数(本例中是 y=10)。代码如下:
# dec.py from time import time def timer(func): def f(*args, **kwargs): before = time() rv = func(*args, **kwargs) after = time() print('time taken: ', after - before) return rv return f @timer def add(x, y=10): return x + y @timer def sub(x, y=10): return x - y print('add(10)', add(10)) print('add(20, 30)', add(20, 30)) print('add("a", "b")', add("a", "b")) print('sub(10)', sub(10)) print('sub(20, 30)', sub(20, 30))
现在,该 timer 函数可以处理任意函数、任意参数和任意默认值设置了,因为它仅仅将这些参数传输到函数中。
高阶装饰器
你们可能会疑惑:如果我们可以用一个函数包装另一个函数来添加有用的行为,那么我们可以再进一步吗?我们用一个函数包装另一个函数,再被另一个函数包装吗?
可以!事实上,函数的深度可以随你的意。例如,你想写一个装饰器来执行某个函数 n 次。如下所示:
def ntimes(n): def inner(f): def wrapper(*args, **kwargs): for _ in range(n): rv = f(*args, **kwargs) return rv return wrapper return inner
然后你可以使用上述函数包装另一个函数,例如前文中的 add 函数:
@ntimes(3) def add(x, y): print(x + y) return x + y
输出的语句表明该代码确实执行了 3 次。
本篇关于《Python 装饰器浅析》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于文章的相关知识,请关注golang学习网公众号!

- 上一篇
- Python Web应用程序的最佳实践:Flask-Testing中的单元测试

- 下一篇
- JavaScript在实现智能城市和可持续发展的处理方法上的应用
-
- 文章 · python教程 | 20分钟前 |
- VSCode配置Python:插件推荐及调试攻略
- 390浏览 收藏
-
- 文章 · python教程 | 40分钟前 | 嵌套结构 安全性 json.loads() try-except ujson
- Python解析JSON响应的详细教程
- 492浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python数据归一化技巧详解
- 371浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- 数据类型转换技巧与方法全解析
- 176浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python轻松重命名文件的技巧
- 207浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python工厂模式使用技巧与示例详解
- 178浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python测试异常的绝佳技巧
- 360浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python函数定义与调用全攻略
- 454浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- JSON数据处理技巧与应用攻略
- 395浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 协启动
- SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
- 7次使用
-
- Brev AI
- 探索Brev AI,一个无需注册即可免费使用的AI音乐创作平台,提供多功能工具如音乐生成、去人声、歌词创作等,适用于内容创作、商业配乐和个人创作,满足您的音乐需求。
- 7次使用
-
- AI音乐实验室
- AI音乐实验室(https://www.aimusiclab.cn/)是一款专注于AI音乐创作的平台,提供从作曲到分轨的全流程工具,降低音乐创作门槛。免费与付费结合,适用于音乐爱好者、独立音乐人及内容创作者,助力提升创作效率。
- 6次使用
-
- PixPro
- SEO摘要PixPro是一款专注于网页端AI图像处理的平台,提供高效、多功能的图像处理解决方案。通过AI擦除、扩图、抠图、裁切和压缩等功能,PixPro帮助开发者和企业实现“上传即处理”的智能化升级,适用于电商、社交媒体等高频图像处理场景。了解更多PixPro的核心功能和应用案例,提升您的图像处理效率。
- 6次使用
-
- EasyMusic
- EasyMusic.ai是一款面向全场景音乐创作需求的AI音乐生成平台,提供“零门槛创作 专业级输出”的服务。无论你是内容创作者、音乐人、游戏开发者还是教育工作者,都能通过EasyMusic.ai快速生成高品质音乐,满足短视频、游戏、广告、教育等多元需求。平台支持一键生成与深度定制,积累了超10万创作者,生成超100万首音乐作品,用户满意度达99%。
- 9次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览