Python实现快速排序算法
一分耕耘,一分收获!既然打开了这篇文章《Python实现快速排序算法》,就坚持看下去吧!文中内容包含等等知识点...希望你能在阅读本文后,能真真实实学到知识或者帮你解决心中的疑惑,也欢迎大佬或者新人朋友们多留言评论,多给建议!谢谢!
快速排序是一种常用的排序算法,其时间复杂度为 O(nlogn)。在实际应用中,快速排序通常比其他排序算法快得多。Python 提供了许多内置的排序函数,但了解和实现快速排序仍然很重要。在本文中,我们将通过 Python 实现快速排序算法。
快速排序的工作原理是选定一个基准值(pivot),然后将列表中所有小于基准值的元素放在一个子列表中,将所有大于基准值的元素放在另一个子列表中。然后对这两个子列表递归进行快速排序。最终,所有子列表都将被递归排序,然后合并成一个排好序的列表。
以下是用 Python 实现快速排序的代码:
def quick_sort(arr): if len(arr) < 2: return arr else: pivot = arr[0] less = [i for i in arr[1:] if i <= pivot] greater = [i for i in arr[1:] if i > pivot] return quick_sort(less) + [pivot] + quick_sort(greater)
在上面的代码中,我们首先检查列表的长度。如果列表长度小于 2,我们就返回原列表。否则,我们选择列表的第一个元素作为基准值(pivot)。然后,我们使用列表推导式将小于等于基准值的元素放入一个列表中,并将大于基准值的元素放入另一个列表中。接下来,我们递归将较小和较大的列表进行排序,并将排好序的列表连接在一起,基准值置于连接的列表中间。
这个算法需要选择一个合适的基准数。如果选择的基准数恰好是列表中的最大(或最小)值,那么递归排序的子列表大小只减少了 1。这种情况下,快速排序算法的时间复杂度可能会退化为 O(n2)。为了避免这种情况,我们可以使用随机选取基准值的方法。这个方法在基准值不是列表中的最大(或最小)值的情况下,平均地保证了递归排序的子列表大小。
以下是使用随机选择基准值的 Python 代码:
import random def quick_sort(arr): if len(arr) < 2: return arr else: pivot_index = random.randint(0, len(arr) - 1) pivot = arr[pivot_index] less = [i for i in arr[:pivot_index] + arr[pivot_index + 1:] if i <= pivot] greater = [i for i in arr[:pivot_index] + arr[pivot_index + 1:] if i > pivot] return quick_sort(less) + [pivot] + quick_sort(greater)
在上面的代码中,我们先使用 random.randint() 函数随机选择一个基准值。然后,我们将小于等于基准值的元素放入一个列表中,并将大于基准值的元素放入另一个列表中,这与前面那个实现方法是类似的。
总结一下,我们通过 Python 实现了快速排序算法,并使用随机选择基准值的方法避免了递归排序的子列表的大小不均衡的情况。这个算法是基于分治(Divide and Conquer)思想的,它能够在平均情况下以 O(nlogn) 的时间复杂度快速对列表进行排序。
今天带大家了解了的相关知识,希望对你有所帮助;关于文章的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~

- 上一篇
- 使用Mustache模板引擎在CakePHP中的实现方法

- 下一篇
- 介绍Java语言中常用的容器应用
-
- 文章 · python教程 | 7分钟前 |
- Python中idx是什么意思?
- 241浏览 收藏
-
- 文章 · python教程 | 12分钟前 |
- PyCharm无解释器怎么解决?全攻略
- 264浏览 收藏
-
- 文章 · python教程 | 14分钟前 | 异常处理 CSV文件处理
- 处理CSV文件时如何避免编码错误和类型转换异常
- 406浏览 收藏
-
- 文章 · python教程 | 21分钟前 |
- Python环境变量配置全攻略
- 163浏览 收藏
-
- 文章 · python教程 | 28分钟前 |
- Python中Lock对象使用全解析
- 457浏览 收藏
-
- 文章 · python教程 | 32分钟前 | Python any/all
- any()和all()函数区别与使用方法详解
- 201浏览 收藏
-
- 文章 · python教程 | 35分钟前 |
- 正则表达式回溯是什么?如何避免?
- 418浏览 收藏
-
- 文章 · python教程 | 38分钟前 |
- Python异常处理测试技巧全解析
- 274浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python知识图谱构建全攻略
- 487浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python遍历详解:元素迭代全解析
- 387浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python自动化测试工具与框架教程
- 281浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 茅茅虫AIGC检测
- 茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
- 126次使用
-
- 赛林匹克平台(Challympics)
- 探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
- 146次使用
-
- 笔格AIPPT
- SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
- 144次使用
-
- 稿定PPT
- 告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
- 133次使用
-
- Suno苏诺中文版
- 探索Suno苏诺中文版,一款颠覆传统音乐创作的AI平台。无需专业技能,轻松创作个性化音乐。智能词曲生成、风格迁移、海量音效,释放您的音乐灵感!
- 146次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览