当前位置:首页 > 文章列表 > 文章 > python教程 > Python实现快速排序算法

Python实现快速排序算法

2024-01-22 19:04:51 0浏览 收藏

一分耕耘,一分收获!既然打开了这篇文章《Python实现快速排序算法》,就坚持看下去吧!文中内容包含等等知识点...希望你能在阅读本文后,能真真实实学到知识或者帮你解决心中的疑惑,也欢迎大佬或者新人朋友们多留言评论,多给建议!谢谢!

快速排序是一种常用的排序算法,其时间复杂度为 O(nlogn)。在实际应用中,快速排序通常比其他排序算法快得多。Python 提供了许多内置的排序函数,但了解和实现快速排序仍然很重要。在本文中,我们将通过 Python 实现快速排序算法。

快速排序的工作原理是选定一个基准值(pivot),然后将列表中所有小于基准值的元素放在一个子列表中,将所有大于基准值的元素放在另一个子列表中。然后对这两个子列表递归进行快速排序。最终,所有子列表都将被递归排序,然后合并成一个排好序的列表。

以下是用 Python 实现快速排序的代码:

def quick_sort(arr):
    if len(arr) < 2:
        return arr
    else:
        pivot = arr[0]
        less = [i for i in arr[1:] if i <= pivot]
        greater = [i for i in arr[1:] if i > pivot]
        return quick_sort(less) + [pivot] + quick_sort(greater)

在上面的代码中,我们首先检查列表的长度。如果列表长度小于 2,我们就返回原列表。否则,我们选择列表的第一个元素作为基准值(pivot)。然后,我们使用列表推导式将小于等于基准值的元素放入一个列表中,并将大于基准值的元素放入另一个列表中。接下来,我们递归将较小和较大的列表进行排序,并将排好序的列表连接在一起,基准值置于连接的列表中间。

这个算法需要选择一个合适的基准数。如果选择的基准数恰好是列表中的最大(或最小)值,那么递归排序的子列表大小只减少了 1。这种情况下,快速排序算法的时间复杂度可能会退化为 O(n2)。为了避免这种情况,我们可以使用随机选取基准值的方法。这个方法在基准值不是列表中的最大(或最小)值的情况下,平均地保证了递归排序的子列表大小。

以下是使用随机选择基准值的 Python 代码:

import random

def quick_sort(arr):
    if len(arr) < 2:
        return arr
    else:
        pivot_index = random.randint(0, len(arr) - 1)
        pivot = arr[pivot_index]
        less = [i for i in arr[:pivot_index] + arr[pivot_index + 1:] if i <= pivot]
        greater = [i for i in arr[:pivot_index] + arr[pivot_index + 1:] if i > pivot]
        return quick_sort(less) + [pivot] + quick_sort(greater)

在上面的代码中,我们先使用 random.randint() 函数随机选择一个基准值。然后,我们将小于等于基准值的元素放入一个列表中,并将大于基准值的元素放入另一个列表中,这与前面那个实现方法是类似的。

总结一下,我们通过 Python 实现了快速排序算法,并使用随机选择基准值的方法避免了递归排序的子列表的大小不均衡的情况。这个算法是基于分治(Divide and Conquer)思想的,它能够在平均情况下以 O(nlogn) 的时间复杂度快速对列表进行排序。

今天带大家了解了的相关知识,希望对你有所帮助;关于文章的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~

使用Mustache模板引擎在CakePHP中的实现方法使用Mustache模板引擎在CakePHP中的实现方法
上一篇
使用Mustache模板引擎在CakePHP中的实现方法
介绍Java语言中常用的容器应用
下一篇
介绍Java语言中常用的容器应用
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 千音漫语:智能声音创作助手,AI配音、音视频翻译一站搞定!
    千音漫语
    千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
    169次使用
  • MiniWork:智能高效AI工具平台,一站式工作学习效率解决方案
    MiniWork
    MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
    167次使用
  • NoCode (nocode.cn):零代码构建应用、网站、管理系统,降低开发门槛
    NoCode
    NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
    171次使用
  • 达医智影:阿里巴巴达摩院医疗AI影像早筛平台,CT一扫多筛癌症急慢病
    达医智影
    达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
    175次使用
  • 智慧芽Eureka:更懂技术创新的AI Agent平台,助力研发效率飞跃
    智慧芽Eureka
    智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
    188次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码